Discussion
This survey found that in the clinical setting, almost all retina physicians adopted the recommended safety guidelines when performing endolaser. However, laser protection practices were not uniformly followed by the surgical assistant or auxiliary staff in the clinic and the operating room, and the results varied between the different regions of the world.
Our survey showed that when operating with a microscope, nearly all surgeons were compliant with laser protection guidelines when endolaser was in use. For 3D surgery, we found that only half of the surgeons use laser protection goggles. This may stem from that there are currently no clear recommendations on laser protection for the surgeons when operating with 3D surgery and not directly looking through the microscope. It is plausible to presume that compared with the microscope oculars, the screen projection of the microscope image in 3D surgery does not emit any significant laser radiation to the surgeon’s eyes, and has a negligible risk of laser scatter. Another possible reason for not using laser protection during 3D surgery is that using the laser eyewear on top of the 3D glasses may disrupt 3D viewing; however, this could be mitigated by reversing the arrangement of the laser eyewear in relation 3D glasses.6 It is of note that the number of respondents who use 3D surgery was relatively small, which is not surprising given that the technology is relatively new.
We observed that a substantial proportion of the auxiliary staff in the operating room, and during indirect and slit lamp retinal laser procedures do not adhere to the recommended laser protection guidance. Only about 40%–60% of the respondents reported that their auxiliary staff routinely use laser protection goggles in these settings, with the uptake being higher in North American practices compared with the other regions of the world (figure 1). While laser injury is less likely to occur if a person is further away from the laser source or if low laser energy is used, the NOHD has been estimated to be in the range of approximately 20 m for the laser indirect ophthalmoscope and 3 m for retinal endolaser within the blue-green light spectrum.2 3
Although rare, ocular injury from retinal laser in the absence of laser protection eyewear could occur in few scenarios. First, most laser-induced retinal injuries are caused by accidental laser discharge during the preparation of laser devices with the medical personnel directly looking at the source of laser without protection.7 8 Second, damage to the laser equipment might result in unintentional emergence of radiation, for example from a damaged endolaser probe or faulty laser filters as reported in this survey. Finally, psychosocial issues of the surgeons may be a potential cause for laser injury. Studies have shown that a small number of surgeons may exhibit a disruptive behaviour towards colleagues which may include verbal and physical violence.9 10 In a qualitative study that analysed surgeon behaviour in the perioperative environment by, Cochran and Elder, reported surgeons directly throwing objects at colleagues among other patterns of abusive behaviour in the in the operating room.9 Although a deliberate error involving the use of laser towards coworkers has not been reported, it could still occur.
Safety concepts and measures in the healthcare system have largely been adopted from the aviation industry.11 To safeguard safety standards in aviation, there is strong emphasis on root cause analyses and constructive learning from adverse events, including those that are rarely encountered. Along the same line of reasoning, the fact that accidental injury from retinal laser is rare, should not make the medical personnel reluctant to adhere to the recommended laser protection policies, as the consequences of sustaining a retinal injury are dire to the person and their organisation. Therefore, it is important to take all required safety measures during laser treatment, in addition to eye protection, such as putting the laser in standby mode when not in use, turning the laser hazard light and closing the operating room door while laser is in use.
The results of this survey need to be interpreted with caution. Similar to other survey studies, there may be bias due to the voluntary nature of this survey and bias due to the sample size. Another limitation is that our results are more reflective of the world region of practice rather than specific countries, given the small number of responses from individual countries. Also, because this questionnaire is the first of its kind, there is limited literature to compare to in ophthalmology. Despite these limitations, our study is a useful examination of how retina specialists and their teams adhere to existing guidance on laser safety in the current real-word clinical setting.
We conclude that the use of laser protection by the operating retinal physicians during endolaser is reassuring. However, laser protection is not uniformly adopted by the auxiliary staff in the clinic or in the operating room. More research is needed to assess the reasons behind this trend.