Article Text

Original research
High rate and large intercentre variability in retreatment of retinopathy of prematurity in infants born <24 gestational weeks
  1. Pia Lundgren1,2,
  2. Lena Jacobson3,
  3. Anna-Lena Hård1,
  4. Abbas Al-Hawasi4,
  5. Eva Larsson5,
  6. Lotta Gränse6,
  7. Marie Saric7,
  8. Birgitta Sunnqvist8,
  9. Kristina Tornqvist6,
  10. Agneta Wallin9,
  11. Gerd E Holmstrom5,
  12. Lois LE Smith10,
  13. Eva Morsing11,
  14. Ann Hellström1
  1. 1The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
  2. 2School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
  3. 3Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
  4. 4Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
  5. 5Institution of Neuroscience/Ophthalmology, Uppsala University, Uppsala, Sweden
  6. 6Department of Clinical Sciences, Ophthalmology, Skåne University Hospital, Lund University, Lund, Sweden
  7. 7Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden
  8. 8Department of Ophthalmology, Länssjukhuset Ryhov, Jonkoping, Sweden
  9. 9St Erik Eye Hospital, Stockholm, Sweden
  10. 10Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
  11. 11Department of Pediatrics, Clinical Sciences Lund, Skåne University Hospital Lund, Lund, Sweden
  1. Correspondence to Dr Pia Lundgren; pia.lundgren{at}gu.se

Abstract

Objective Prematurity is a major risk factor for retinopathy of prematurity (ROP). We aimed to elucidate ROP prevalence, treatment and retreatment in infants born before 24 gestational age (GA) weeks in a Swedish cohort.

Methods and analysis Infants with completed ROP screening, born at <24 GA weeks, 2007–2018 in Sweden were included. Data of GA, birth weight (BW), sex, neonatal morbidities, maximal ROP stage, aggressive posterior ROP (APROP), ROP treatments, treatment modality and treatment centre were retrieved.

Results In total, 399 infants, with a mean GA of 23.2 weeks (range 21.9–23.9) and a mean BW of 567 g (range 340–874), were included. ROP was detected in 365 (91.5%) infants, 173 (43.4%) were treated for ROP and 68 of 173 (39.3%) were treated more than once. As the first treatment, 142 (82.0%) received laser and 29 (16.1%) received intravitreal injection of antivascular endothelial growth factor (anti-VEGF). Retreatment was performed after first laser in 46 of 142 (32.4%) and in 20 of 29 (69.0%) after first anti-VEGF treatment. Retreatment rate was not associated with GA, BW or sex but with APROP, treatment method (anti-VEGF) and treatment centre where the laser was performed (p<0.001). Twenty eyes progressed to retinal detachment, and two infants developed unilateral endophthalmitis after anti-VEGF treatment.

Conclusion Infants, born at <24 weeks’ GA, had high rates of treatment-warranting ROP and retreatments. Treatment centre highly influenced the retreatment rate after laser indicating that laser treatment could be improved in some settings.

  • retina

Data availability statement

All data relevant to the study are included in the article or uploaded as supplementary information.

https://creativecommons.org/licenses/by/4.0/

This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Data availability statement

All data relevant to the study are included in the article or uploaded as supplementary information.

View Full Text

Supplementary material

Footnotes

  • Contributors PL, EM and AH had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Concept and design: PL, A-LH, LJ, EM and AH. Acquisition of data: PL, GEH and AH. Analysis or interpretation of data: PL, A-LH and AH. Drafting of the manuscript: PL. Critical revision of the manuscript for important intellectual content: all authors. Approval of the final manuscript: all authors. Statistical analyses: PL. Obtained funding: AH. Administrative, technical or material support: PL, A-LH, EL, LG, MS, BS, KT, AW, GEH and AH.

  • Funding This study was supported by the Swedish Medical Research Council #2016–01131, The Gothenburg Medical Society and Government grants under the ALF agreement ALFGBG-717971, De Blindas Vänner, Knut and Alice Wallenberg Clinical Scholars and Örebro County Council Research Committee. NIH 1R24EY024868, EY017017, EY01717-13S1, EY030904 BCH IDDRC (1U54HD090255 Massachusetts Lions Eye Foundation) (LEHS).

  • Disclaimer None of the funders had any role in the design and conduct of the study; collection, management, analysis and interpretation of the data; preparation, review or approval of the manuscript; and decision to submit the manuscript for publication.

  • Competing interests None declared.

  • Provenance and peer review Not commissioned; externally peer reviewed.

  • Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.