Skip to main content
Log in

Fluoroquinolones

Place in Ocular Therapy

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

The fluoroquinolones have become widely used antibacterial agents in the treatment of ocular infections, with topical, intravitreal and systemic routes of administration being used. In general, fluoroquinolones (such as ciprofloxacin, ofloxacin, lomefloxacin and norfloxacin) have good activity against Gram-negative and Gram-positive bacteria. Therapeutic concentrations are achieved in the cornea after topical administration so that the fluoroqinolones have largely replaced combination therapy for the treatment of bacterial keratitis. However, a second line agent is needed when resistance is likely, such as in disease caused by streptococcal species. Reversal of resistance to quinolones may not occur with withdrawal of the antibacterial. This stresses the importance of prudent prescribing to reduce the occurrence of resistance to quinolones.

When used in therapeutic topical dosages, corneal toxicity does not occur. Similarly, retinal toxicity is not seen when fluoroquinolones are used at therapeutic dosages, systemically or topically. Corneal precipitation occurs, particularly with ciprofloxacin and to a lesser extent norfloxacin, but does not appear to interfere with healing.

In the treatment of endophthalmitis there is reasonable penetration of systemic fluoroquinolones into the vitreous but sufficiently high concentrations to reach the minimum inhibitory concentration for 90% of isolates ( MIC90 ) of all important micro-organisms may not be guaranteed. Systemic administration may be useful for prophylaxis after ocular trauma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I
Table II

Similar content being viewed by others

References

  1. Norris S, Mandell GL. The quinolones: history and overview. Andriole VT, editor. Academic Press Ltd: London. 1988: 1–22

  2. Stevens SX, Fouraker BD, Jensen HG. Intraocular safety of ciprofloxacin. Arch Ophthalmol 1991; 109: 1737–43

    Article  PubMed  CAS  Google Scholar 

  3. Ligtovoet EEJ, Wickerhoff-Minoggio T. In vitro activity of penfloxacin compared with six other quinolones. J Antimicrob Chemother 1985; 16: 485–90

    Article  Google Scholar 

  4. Vila J, Ruiz J, Goni P, et al. Detection of mutations in parC in quinolone-resistant clinical isolates of escherichia coli. Antimicrob Agents Chemother 1996; 40(2): 491–3

    PubMed  CAS  Google Scholar 

  5. Pan XS, Fisher ML. Targeting of DNA gyrase in streptococcus pneumoniae by sparfloxacin: selective targeting of gyrase or topoisomerase iv by quinolones. Antimicrob Agents Chemother 1997; 41(2): 471–4

    PubMed  CAS  Google Scholar 

  6. Takenouchi T, Tabata F, Iwata Y, et al. Hydrophilicity of quinolones is not an exclusive factor for decreased activity in efflux-mediated resistant mutants of staph aureus. Antimicrob Agents Chemother 1996; 40(8): 1835–42

    PubMed  CAS  Google Scholar 

  7. Pan X-S, Ambler J, Mehtar S et al. Involvement of Topoisomerase iv and DNA gyrase as ciprofloxacin targets in Streptococcus pneumoniae. Antimicrob Agents Chemother 1996; 40(10): 2321–6

    PubMed  CAS  Google Scholar 

  8. Goldstein MH, Kowalski RP, Gordon J. Emerging fluoroquinolone resistance in bacterial keratitis. Ophthalmology 1999; 106(7): 1313–8

    Article  PubMed  CAS  Google Scholar 

  9. Kaatz GW, Seo S, Ruble CA. Efflux-mediated fluoroquinolone resistance in staphylococcus aureus. Antimicrob Agents Chemother 1993; 37(5): 1086–94

    Article  PubMed  CAS  Google Scholar 

  10. Tanaka M, Onodera Y, Uchida Y,et al. Inhibitory activities of quinolones against DNA gyrase and topoisomerase IV purified from staphylococcus aureus. Antimicrob Agents Chemother 1997; 41(11): 2362–6

    PubMed  CAS  Google Scholar 

  11. Jones ME, Boenink NM, Verhoef J, et al. Multiple mutations conferring ciprofloxacin resistance in Staphylococcus aureus demonstrate long-term stability in an antibiotic-free environment. J Antimicrob Chemother 2000; 45: 353–6

    Article  PubMed  CAS  Google Scholar 

  12. Jacobs M. Activity of quinolones against mycobacteria. Drugs 1999; 58 Suppl. 2: 19–22

    Article  PubMed  CAS  Google Scholar 

  13. Fiscella RG, Nguyen TKP, Cwik MJ et al. Aqueous and Vitreous Penetration of Levofloxacin after Oral Administration. Ophthalmology 1999; 106(12): 2286–90

    Article  PubMed  CAS  Google Scholar 

  14. Smith MA, Alperstein P, France K, et al. Susceptibility testing of propionibacterium acnes comparing agar dilution with E test. J Clin Microbiol 1996; 34(4): 1024–6

    PubMed  CAS  Google Scholar 

  15. Prosser BLT, Beskid G. Multicenter in vitro comparative study of fluoroquinolones against 25,129 gram-positive and gram-negative clinical isolates. Diagn Microbiol Infect Dis 1995; 21: 33–45

    Article  PubMed  CAS  Google Scholar 

  16. Bower K, Kowalski R, Gordon YJ. Fluoroquinolones in the treatment of bacterial keratitis. Am J Ophthalmol 1996; 121:(6)712–5

    PubMed  CAS  Google Scholar 

  17. Jensen HG, Felix C and the In Vitro Antibiotic Testing Group. In vitro antibiotic susceptibilities of ocular isolates in North and South America. Cornea 1998; 17(1): 79–87

    Article  PubMed  CAS  Google Scholar 

  18. Everett SL, Kowalski RP, Karenchak LM, et al. An in vitro comparison of the susceptibilities of bacterial isolates from patients with conjunctivitis and blepharitis to newer and established topical antibiotics. Cornea 1995; 14(4): 382–7

    Article  PubMed  CAS  Google Scholar 

  19. Neu H. Microbiological aspects of fluoroquinolones. Am J Ophthalmol 112: 15S–24S

  20. Zhao BY, Pine R, Domagala J, et al. Fluoroqinolone action against clinical isolates of mycobacterium tuberculosis: effects of a C-8 methoxyl group on survival in liquid media and in human macrophages. Antimicrob Agents Chemother 1999; 43: 661–6

    PubMed  CAS  Google Scholar 

  21. Alangaden GJ, Lerner SA. The clinical use of fluoroquinolones for the treatment of mycobacterial diseases. Clin Infect Dis 1997; 25: 1213–21

    Article  PubMed  CAS  Google Scholar 

  22. Just PM. Overview of the fluoroquinolone antibiotics. Pharmacology 1993; 13: S4–17

    Google Scholar 

  23. Von Keyserlingk J, Beck R, Fischer U, et al. Penetration of ciprofloxacin, norfloxacin and ofloxacin into the aqueous humour of patients by different topical application modes. Eur J Clin Pharmacol 1997; 53: 251–5

    Article  Google Scholar 

  24. Green LC, Callegan MC, Engel LS. Pharmacokinetics of topically applied ciprofloxacin in rabbit tears. Jpn J Ophthalmol 1996; 40: 123–6

    PubMed  CAS  Google Scholar 

  25. Borrman L, Tang-Liu DD, Kann J, et al. Ofloxacin in human serum, urine, and tear film after topical application. Cornea 1992; 11: 226–30

    Google Scholar 

  26. Diamond JP, White L, Leeming JP, et al. Topical 0.3% ciprofloxacin, norfloxacin, and ofloxacin in treatment of bacterial keratitis: a new method for comparative evaluation of ocular drug penetration. Br J Ophthamol 1995; 79: 606–9

    Article  CAS  Google Scholar 

  27. Donnenfeld ED, Perry HD, Snyder RW et al. Intracorneal, aqueous humor and vitreous humor penetration of topical and oral ofloxacin. Arch Ophthalmol 1997; 115: 173–6

    Article  PubMed  CAS  Google Scholar 

  28. Grayson G, Flowers C, Nassaralla B, et al. Aqueous penetration of 0.3% ciprofloxacin and 0.3% ofloxacin after topical application and a microbial analysis of pre-treatment conjunctiva and post-treatment aqueous humor. Invest Ophthalmol Vis Sci 1995; 36: S160

    Google Scholar 

  29. Bouchard CS, King KK, Holmes JM. The kinetics of anterior chamber ofloxacin penetration. Cornea 1996; 15: 72–5

    Article  PubMed  CAS  Google Scholar 

  30. McDermott ML, Tran TD, Cowden JW et al. Corneal stromal penetration of topical ciprofloxacin in humans. Ophthalmology 1992; 100: 197–200

    Google Scholar 

  31. Reidy JJ, Hobden JA, Hill JM, et al. The efficacy of topical ciprofloxacin and norfloxacin in the treatment of experimental Pseudomonas keratitis. Cornea 1991; 10: 25–8

    PubMed  CAS  Google Scholar 

  32. Price FW, Whiston WE, Collins KS, et al. Corneal tissue levels of topically applied ciprofloxacin. Cornea 1995; 14: 152–6

    Article  PubMed  Google Scholar 

  33. O’Brien TP, Maguire MG, Fink NE, et al. Efficacy of ofloxacin vs cefazolin and tobramycin in the therapy for bacterial keratitis: report from the Bacterial Keratitis Study Research Group. Arch Ophthalmol 1995; 113: 1257–65

    Article  PubMed  Google Scholar 

  34. Pamel GJ, Perl T. Collagen shield delivery of ciprofloxacin in uninflamed eyes. Invest Ophthalmol Vis Sci 1993; S769-

  35. Donnenfeld ED, Schrier A, Perry HD, et al. Penetration of topically applied ciprofloxacin, norfloxacin and ofloxacin into the aqueous humor. Ophthalmology 1994; 101: 902–5

    PubMed  CAS  Google Scholar 

  36. Kowalski RP, Karenchak LM, Gordon YJ. Comparison of ciprofloxacin and ofloxacin using human corneal susceptibility levels. Cornea 1998; 17: 282–7

    Article  PubMed  CAS  Google Scholar 

  37. Ellner PD, Neu HC. The inhibitory quotient: a method for interpreting minimum inhibitory concentration data. JAMA 1981; 246: 1575–208

    Article  PubMed  CAS  Google Scholar 

  38. Osato MS. Effect of two balanced salt solutions on the bioavailability of ofloxacin and ciprofloxacin. Adv In Ther 1999; 16(5): 200–9

    CAS  Google Scholar 

  39. Agius-Fernandez A, Patterson A, Fsadni M, et al. Topical lomefloxacin versus topical chloramphenicol in the treatment of acute bacterial conjunctivitis. Clin Drug Invest 1998; 15(4): 263–9

    Article  CAS  Google Scholar 

  40. Friedlander MH. Twice-a-day versus four-times-a-day ofloxacin treatment of external ocular infection. CLAO Journal 1998; 24(1): 49–51

    Google Scholar 

  41. Nakagawa H. Treatment of chlamydial conjunctivitis. Ophthalmologica 1997; 211 Suppl 1: 25–8

    Article  PubMed  CAS  Google Scholar 

  42. Leibowitz H. Clinical evaluation of ciprofloxacin 0.3%: opthalmic solution for treatment of bacterial keratitis. Am J Ophthalmol 1991; 112: 29S–33S

    PubMed  CAS  Google Scholar 

  43. Barry AL, Jones RN. In vitro activity of ciprofloxacin against gram-positive cocci. Am J Med 1987; 82: 27–32

    PubMed  CAS  Google Scholar 

  44. Hofman J, Cetron MS, Farley MM, et al. The prevalence of drug-resistant streptococcus pneumoniae in Atlanta. N Engl J Med 1995; 333: 481–6

    Article  Google Scholar 

  45. Wilhelmus KR, Hyndiuk RA, Caldwell DR, et al. 0.3% Ciprofloxacin ophthalmic ointment in the treatment of bacterial keratitis: the Ciprofloxacin Ointment/Bacterial Keratitis Study Group. Arch Ophthalmol 1993; 111: 1210–8

    Article  PubMed  CAS  Google Scholar 

  46. Maffet M, O’Day DM. Ciprofloxacin-resistant bacterial keratitis. Am J Ophthalmol 1993; 115: 545–6

    Google Scholar 

  47. Snyder ME, Katz HR. Ciprofloxacin-resistant bacterial keratitis. Am J Ophthalmol 1992; 114: 336–9

    PubMed  CAS  Google Scholar 

  48. Castillo A, Castillo JMB, Toledano N, et al. Deposits of topical norfloxacin in the treatment of bacterial keratitis. Cornea 1997; 16: 420–3

    Article  PubMed  CAS  Google Scholar 

  49. Gangopadhyay N, Daniell M, Weih L, et al. Fluoroquinolones and fortified antibiotics for treating bacterial corneal ulcers. BJO 2000; 84: 378–84

    Article  CAS  Google Scholar 

  50. Pfister RR, Burstein N. The effects of ophthalmic drugs, vehicles and preservatives on the corneal epithelium: a scanning electron microscopic study. Invest Ophthalmol 1976; 15: 246–9

    PubMed  CAS  Google Scholar 

  51. Lin CP, Boehnke M. Effect of fortified antibiotic solutions on corneal epithelial wound healing. Cornea 2000; 19: 204–6

    Article  PubMed  CAS  Google Scholar 

  52. Burnstein NL. Corneal cytotoxicity of topically applied drugs, vehicles and preservatives. Surv Ophthalmol 1980; 25(1): 15–30

    Article  Google Scholar 

  53. Hyndiuk RA, Eiferman RA, Caldwell DR, et al. Comparison of ciprofloxacin ophthalmic solution 0.3% to fortified tobramycin-cefazolin in treating bacterial corneal ulcers. Ophthalmology 1996; 103: 1854–63

    PubMed  CAS  Google Scholar 

  54. Baum JL. Treatment of bacterial ulcers of the cornea in the rabbit: a comparison of administration by eye drops and subconjunctival injections. Trans Am Ophthalmol Soc 1982; 80: 369–90

    PubMed  CAS  Google Scholar 

  55. Rolando M, Brezzo V, Campagna P, et al. Toxic effects of antimicrobials on the ocular surface of healthy volunteers. Chibret Int J Ophthalmol 1991; 8: 46–50

    Google Scholar 

  56. Konishi M, Yamada M, Mashima Y. Corneal ulcer associated with deposits of norfloxacin. Am J Ophthalmol 1998; 125(2); 258–60

    Article  PubMed  CAS  Google Scholar 

  57. Petroutsos G, Guimaraes R, Pouliquen Y. The effect of concentrated antibiotics on the rabbit’s corneal epithelium. Int Ophthalmol 1984; 7: 65–9

    Article  PubMed  CAS  Google Scholar 

  58. Nakamura M, Nishida T, Mishima H, et al. Effects of antimicrobials on corneal epithelial migration. Curr Eye Res 1993; 12: 733–40

    Article  PubMed  CAS  Google Scholar 

  59. Wolfson JS, Hooper DC. The fluoroquinolones: structures, mechanisms of action and resistance, and spectra of activity in vitro. Antimicrob Agents Chemother 1985; 28: 581–6

    Article  PubMed  CAS  Google Scholar 

  60. Kang F, Serdarevic ON, Kuang K, et al. Effects of ciprofloxacin, streptomycin and gentamicin on rabbit corneal transendothelial electrical potential difference. Cornea 1998; 17: 185–90

    Article  PubMed  CAS  Google Scholar 

  61. Fischbarg J. Potential difference and fluid transport across rabbit corneal endothelium. Biochem Biophys Acta 1972; 228: 362–6

    Google Scholar 

  62. McDermott M, Hazlett LD, Barrett R. The effects of ofloxacin on the human corneal endothelium. Cornea 1997; 16: 209–14

    Article  PubMed  CAS  Google Scholar 

  63. El Baba FZ, Trousdale MD, Gandermann WJ, et al. Intravitreal penetration of oral ciprofloxacin in humans. Ophthalmology 1992; 99: 483–6

    PubMed  Google Scholar 

  64. Keren U, Alhalel A, Bartov E, et al. The intravitreal penetration of orally administered ciprofloxacin in humans. Invest Ophthalmol Vis Sci 1991; 32: 2388–92

    PubMed  CAS  Google Scholar 

  65. Alfaro DV, Hudson SJ, Rafanan MM, et al. The effect of trauma on the ocular penetration of intravenous ciprofloxacin. Am J Ophthalmol 1996; 122(5): 678–83

    PubMed  CAS  Google Scholar 

  66. Lesk MR, Ammann H, Marcil G, et al. The penetration of oral ciprofloxacin into the aqueous humor, vitreous and subretinal fluid of humans. Am J Ophthalmol 1993; 115: 623–8

    PubMed  CAS  Google Scholar 

  67. O’Brien TP, Sawusch MR, Dick JA, et al. Topical ciprofloxacin treatment of Pseudomonas keratitis in rabbits. Arch Ophthalmol 1988; 106: 1444–6

    Article  PubMed  Google Scholar 

  68. Mochizuki K, Higashide T, Torisaki M. Effects of norfloxacin on the retina in rabbits. Graefe’s Arch Clin Exp Ophthalmol 1995; 233: 173–80

    Article  CAS  Google Scholar 

  69. Ooishi M, Miyao M, Sakaue F, et al. Intraocular penetration of norfloxacin eye drops. Acta Med Biol 1991; 39: 67–73

    CAS  Google Scholar 

  70. Ng EWM, Samiy N, Ruoff KL, et al. Treatment of experimental staphylococcus epidermidis endophtalmitis with oral trovafloxacin. Am J Ophthalmol 1998; 126(2): 278–87

    Article  PubMed  CAS  Google Scholar 

  71. Stern GA, Schemmer GB, Farber RD, et al. Effect of topical antibiotic solutions on corneal epithelial wound healing. Arch Ophthalmol 1983; 101: 664–7

    Article  Google Scholar 

  72. Davis JL. Intravenous antibiotics for endophthalmitis. Am J Ophthalmol 1996; 122(5): 724–6

    PubMed  CAS  Google Scholar 

  73. Driebe Jr WT, Mandelbaum S, Forster RK. Pseudophakic endophthalmitis: diagnosis and management. Ophthalmology 1986; 93: 442–8

    PubMed  Google Scholar 

  74. O’Day DM, Jones DB, Patrinely J, et al. Staphylococcus epidermidis endophthalmitis. Visual outcome following non-invasive therapy. Ophthalmology 1982; 89: 354–60

    PubMed  Google Scholar 

  75. Speaker MG, Milch FA, Shah MK. Role of external bacterial flora in the pathogenesis of acute postoperative endophthalmitis. Ophthalmology 1991; 98: 639–50

    PubMed  CAS  Google Scholar 

  76. Sande MA. Antibiotic therapy of bacterial meningitis: lessons we’ve learned. Am J Med 1981; 71: 507–10

    Article  PubMed  CAS  Google Scholar 

  77. The Endophthalmitis Vitrectomy Study Group. Results of the Endophthalmitis Vitrectomy Study: a randomised trial of immediate vitrectomy and of intravenous antibiotics for the treatment of postoperative bacterial endophthalmitis. Arch Ophthalmol 1995; 113: 1479–96

    Article  Google Scholar 

  78. Grimm H. In vitro activity of new quinolones against non-fermentative gram-negative rods and interpretation of susceptibility testing. Infection 1986; 14: S191–5

    Article  PubMed  CAS  Google Scholar 

  79. Wise R, Andrews JM, Matthews R, et al. The in vitro activity of two new quinolones: rufloxacin and MF 961. J Antimicrob Chemother 1992; 29: 649–60

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr S. Pearson and Mr P. Assheton for assistance with the illustrations and also Dr D. Assheton for proof-reading.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, A., Pennefather, P.M., Kaye, S.B. et al. Fluoroquinolones. Drugs 61, 747–761 (2001). https://doi.org/10.2165/00003495-200161060-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200161060-00004

Keywords

Navigation