Skip to main content
Log in

Clinical Pharmacokinetics of Cyclophosphamide

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Cyclophosphamide is an extensively used anticancer and immunosuppressive agent. It is a prodrug undergoing a complicated process of metabolic activation and inactivation. Technical difficulties in the accurate determination of the cyclophosphamide metabolites have long hampered the assessment of the clinical pharmacology of this drug. As these techniques are becoming increasingly available, adequate description of the pharmacokinetics of cyclophosphamide and its metabolites has become possible.

There is incomplete understanding on the role of cyclophosphamide metabolites in the efficacy and toxicity of cyclophosphamide therapy. However, relationships between toxicity (cardiotoxicity, veno-occlusive disease) and exposure to cyclophosphamide and its metabolites have been established. Variations in the balance between metabolic activation and inactivation of cyclophosphamide owing to autoinduction, dose escalation, drug-drug interactions and individual differences have been reported, suggesting possibilities for optimisation of cyclophosphamide therapy.

Knowledge of the pharmacokinetics of cyclophosphamide, and possibly monitoring the pharmacokinetics of cyclophosphamide in individuals, may be useful for improving its therapeutic index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I
Table II
Table III
Fig. 2

Similar content being viewed by others

References

  1. Arnold H, Bourseaux F, Brock N. Chemotherapeutic action of a cyclic nitrogen mustard phosphamide ester (B 518-ASTA) in experimental tumours in rats. Nature 1958; 181: 931

    Article  PubMed  CAS  Google Scholar 

  2. Flowers JL, Ludeman SM, Gamcsik MP, et al. Evidence for a role of chloroethylaziridine in the cytotoxicity of cyclophosphamide. Cancer Chemother Pharmacol 2000; 45: 335–44

    Article  PubMed  CAS  Google Scholar 

  3. Shulman-Roskes EM, Noe DA, Gamcsik MP, et al. The partitioning of phosphoramide mustard and its aziridinium ions among alkylation and P-N bond hydrolysis reactions. J Med Chem 1998; 41: 515–29

    Article  PubMed  CAS  Google Scholar 

  4. Colvin M, Brundrett RB, Kan MNN, et al. Alkylating properties of phosphoramide mustard. Cancer Res 1976; 36: 1121–6

    PubMed  CAS  Google Scholar 

  5. Povirk LF, Shuker DE. DNA damage and mutagenesis induced by nitrogen mustards. Mutat Res 1994; 318: 205–26

    Article  PubMed  CAS  Google Scholar 

  6. O’Connor PM, Wasserman K, Sarnag M. Relationships between DNA cross-links, cell cycle and apoptosis in Burkitt’s lymphoma cell lines differing in sensitivity to nitrogen mustard. Cancer Res 1991; 51: 6550–7

    PubMed  Google Scholar 

  7. Bruce WR, Meeker BE, Valeriote FA. Comparison of the sensitivity of normal hematopoietic and transplanted lymphoma colony-forming cells to chemotherapeutic agents administered in vivo. J Natl Cancer Inst 1966; 37: 223–45

    Google Scholar 

  8. Klein HO, Wickramanayake PD, Christian E, et al. Therapeutic effects of single-push of fractionated injections or continuous infusion of oxazaphosphorines (cyclophosphamide, ifosfamide; Asta Z 7557). Cancer 1984; 54: 1193–203

    Article  PubMed  CAS  Google Scholar 

  9. Voelker G, Wagner T, Wientzek C, et al. Pharmacokinetics of “activated” cyclophosphamide and therapeutic efficacies. Cancer 1984; 54: 1179–86

    Article  Google Scholar 

  10. Ahmed AR, Hombal SM. Cyclophosphamide (Cytoxan): a review on relevant pharmacology and clinical uses. J Am Acad Dermatol 1984; 11: 1115–26

    Article  PubMed  CAS  Google Scholar 

  11. Colleoni M, Rocca A, Sandri MT, et al. Low-dose oral methotrexate and cyclophosphamide in metastatic breast cancer: antitumor activity and correlation with vascular endothelial growth factor levels. Ann Oncol 2002; 13: 73–80

    Article  PubMed  CAS  Google Scholar 

  12. Sladek NE. Metabolism of oxazaphosphorines. Pharmacol Ther 1988; 37: 301–55

    Article  PubMed  CAS  Google Scholar 

  13. Grochow LB, Colvin M. Clinical pharmacokinetics of cyclophosphamide. Clin Pharmacokinet 1979; 4: 380–94

    Article  PubMed  CAS  Google Scholar 

  14. Moore MJ. Clinical pharmacokinetics of cyclophosphamide. Clin Pharmacokinet 1991; 20: 194–208

    Article  PubMed  CAS  Google Scholar 

  15. Fleming RA. An overview of cyclophosphamide and ifosfamide pharmacology. Pharmacotherapy 1997; 17 (5 Suppl.): 146–54S

    Google Scholar 

  16. Lind MJ, Ardiet C. Pharmacokinetics of alkylating agents. Cancer Surv 1993; 17: 157–88

    PubMed  CAS  Google Scholar 

  17. Boddy AV, Yule SM. Metabolism and pharmacokinetics of oxazaphosphorines. Clin Pharmacokinet 2000; 38: 291–304

    Article  PubMed  CAS  Google Scholar 

  18. Fenselau C, Kan MNN, Rao SS, et al. Identification of aldophosphamide as a metabolite of cyclophosphamide in vitro and in vivo in humans. Cancer Res 1977; 37: 2538–43

    PubMed  CAS  Google Scholar 

  19. Friedman OM, Wodinsky I, Myles A. Cyclophosphamide (NSC-26271)-related phosphoramide mustards: recent advances and historical perspective. Cancer Treat Rep 1976; 60: 337–46

    PubMed  CAS  Google Scholar 

  20. Connors TA, Cox PJ, Farmer PB, et al. Some studies on the active intermediates formed in the microsomal metabolism of cyclophosphamide and isophosphamide. Biochem Pharmacol 1974; 23: 115–29

    Article  PubMed  CAS  Google Scholar 

  21. Chang TKH, Weber GF, Crespi CL, et al. Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes. Cancer Res 1993; 53: 5629–37

    PubMed  CAS  Google Scholar 

  22. Chang TKH, Yu L, Maurel P, et al. Enhanced cyclophosphamide and ifosfamide activation in primary human hepatocyte cultures: response to cytochrome P-450 inducers and autoinduction by oxazaphosphorines. Cancer Res 1997; 57: 1946–54

    PubMed  CAS  Google Scholar 

  23. Ren S, Yang JS, Kalhorn TF, et al. Oxidation of cyclophosphamide to 4-hydroxycyclophosphamide and deschloroethylcyclophosphamide in human liver microsomes. Cancer Res 1997; 57: 4229–35

    PubMed  CAS  Google Scholar 

  24. Roy P, Yu LJ, Crespi CL, et al. Development of a substrateactivity based approach to identify the major human liver P-450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P-450 profiles. Drug Metab Dispos 1999; 27: 655–66

    PubMed  CAS  Google Scholar 

  25. Huang Z, Roy P, Waxman DJ. Role of liver microsomal CYP 3A4 and CYP2B6 in catalyzing N-dechloroethylation of cyclophosphamide and ifosfamide. Biochem Pharmacol 2000; 59: 961–72

    Article  PubMed  CAS  Google Scholar 

  26. Yu L, Waxman DJ. Role of cytochrome P450 in oxazaphosphorine metabolism: deactivation via N-dechloroethylation and activation via 4-hydroxylation catalyzed by distinct subsets of rat liver cytochromes P450. Drug Metab Dispos 1996; 24: 1254–62

    PubMed  CAS  Google Scholar 

  27. Griskevicius L, Yasar U, Sandberg H, et al. Bioactivation of cyclophosphamide: the role of polymorphic CYP2C enzymes. Eur J Clin Pharmacol 2003; 59: 103–9

    PubMed  CAS  Google Scholar 

  28. Xie HJ, Yasar U, Lundgren S, et al. Role of polymorphic CYP2B6 in cyclophosphamide bioactivation. Pharmacogenomics J 2003; 3: 53–61

    Article  PubMed  CAS  Google Scholar 

  29. Boyd VL, Robbins JD, Egan W, et al. 3 1P nuclear magnetic resonance spectroscopic observation of the intracellular transformations of oncostatic cyclophosphamide metabolites. J Med Chem 1986; 29: 1206–10

    Article  PubMed  CAS  Google Scholar 

  30. Völker G, Dräger U, Peter G, et al. Studien zum spontanzerfall von 4-hydroxycyclophosphamid und 4-hydroxyperoxycyclophosphamid mit hilfe der dünnschichtschromatographie. Arzneimittelforschung 1974; 24: 1172–6

    PubMed  Google Scholar 

  31. Alarcon RA, Meienhofer J. Formation of the cytotoxic aldehyde acrolein during in vitro degradation of cyclophosphamide. Nat New Biol 1971; 233: 250–2

    PubMed  CAS  Google Scholar 

  32. Kwon CH, Maddison K, LoCastro L, et al. Accelerated decomposition of 4-hydroxycyclophosphamide by human serum albumin. Cancer Res 1987; 47: 1505–8

    PubMed  CAS  Google Scholar 

  33. Voelker G, Bielicki L, Hohorst HJ. Evidence for enzymatic toxification of activated cyclophosphamide (4-hydroxycyclophosphamide). J Cancer Res Clin Oncol 1981; 99: A58–9

    Google Scholar 

  34. Hohorst HJ, Bielicki L, Voelcker G. The enzymatic basis of cyclophosphamide specificity. Adv Enzyme Regul 1986; 25: 99–122

    Article  PubMed  CAS  Google Scholar 

  35. Struck RF, Kirk MC, Witt MH, et al. Isolation and mass spectral identification of blood metabolites of cyclophosphamide: evidence for phosphoramide mustard as the biologically active metabolite. Biomed Environ Mass Spectrom 1975; 2: 46–52

    Article  CAS  Google Scholar 

  36. Domeyer BE, Sladek NE. Kinetics of cyclophosphamide biotransformation in vivo. Cancer Res 1980; 40: 174–80

    PubMed  CAS  Google Scholar 

  37. Schmidt R, Baumann F, Knupfer H, et al. CYP3A4, CYP2C9 and CYP2B6 expression and ifosfamide turnover in breast cancer tissue microsomes. Br J Cancer 2004; 90: 911–6

    Article  PubMed  CAS  Google Scholar 

  38. Highley MS, Harper PG, Slee PH, et al. Preferential location of circulating activated cyclophosphamide within the erythrocyte. Int J Cancer 1996; 65: 711–2

    Article  PubMed  CAS  Google Scholar 

  39. Highley MS, Schrijvers D, Van Oosterom AT, et al. Activated oxazaphosphorines are transported predominantly by erythrocytes. Ann Oncol 1997; 8: 1139–44

    Article  PubMed  CAS  Google Scholar 

  40. Chen TL, Kennedy MJ, Anderson LW, et al. Nonlinear pharmacokinetics of cyclophosphamide and 4-hydroxycyclophosphamide/aldophosphamide in patients with metastatic breast cancer receiving high-dose chemotherapy followed by autologous bone-marrow transplantation. Drug Metab Dispos 1997; 25: 544–51

    PubMed  CAS  Google Scholar 

  41. Anderson LW, Chen TL, Colvin OM, et al. Cyclophosphamide and 4-hydroxycyclophosphamide/aldophosphamide kinetics in patients receiving high dose chemotherapy. Clin Cancer Res 1996; 2: 1481–7

    PubMed  CAS  Google Scholar 

  42. Blomgren H, Hallström M. Possible role of acrolein in 4-hydroxyperoxycyclophosphamide-induced cell damage in vitro. Methods Find Exp Clin Pharmacol 1991; 13: 11–4

    PubMed  CAS  Google Scholar 

  43. Crook TR, Souhami RL, Whyman GD, et al. Glutathione depletion as a determinant of sensitivity of human leukaemia cells to cyclophosphamide. Cancer Res 1986; 46: 5035–8

    PubMed  CAS  Google Scholar 

  44. Alarcon RA. Studies on the in vivo formation of acrolein: 3-hydroxypropylmercapturic acid as an index of cyclophosphamide (NSC-26271) activation. Cancer Treat Rep 1976; 60: 327–35

    PubMed  CAS  Google Scholar 

  45. Gurtoo HL, Hipkens JH, Sharma SD. Role of glutathione in the metabolism-dependent toxicity and chemotherapy of cyclophosphamide. Cancer Res 1981; 41: 3584–91

    PubMed  CAS  Google Scholar 

  46. Lee FYF. Glutathione diminishes the anti-tumour activity of 4-hydroxyperoxycyclophosphamide by stabilizing its spontaneous breakdown to alkylating metabolites. Br J Cancer 1991; 63: 45–50

    Article  PubMed  CAS  Google Scholar 

  47. Richardson ME, Siemann DW. DNA damage in cyclophosphamide-resistant tumor cells: the role of glutathione. Cancer Res 1995; 55: 1691–5

    PubMed  CAS  Google Scholar 

  48. Dirven HA, Van Ommen B, Van Bladeren PJ. Involvement of human glutathione S-transferase isoenzymes in the conjugation of cyclophosphamide metabolites with glutathione. Cancer Res 1994; 54: 6215–20

    PubMed  CAS  Google Scholar 

  49. Peters RH, Jollow DJ, Stuart RK. Role of glutathione in the in vitro synergism between 4-hydroperoxy-cyclophosphamide and cisplatin in leukemia cell lines. Cancer Res 1991; 51: 2536–41

    PubMed  CAS  Google Scholar 

  50. Crook TR, Souhami RL, McLean AEM. Cytotoxicity, DNA cross-linking, and single strand breaks induced by activated cyclophosphamide and acrolein in human leukemia cells. Cancer Res 1986; 46: 5029–34

    PubMed  CAS  Google Scholar 

  51. Marinello AJ, Gurtoo HL, Struck RF, et al. Denaturation of cytochrome P-450 by cyclophosphamide metabolites. Biochem Biophys Res Commun 1978; 83: 1347–53

    Article  PubMed  CAS  Google Scholar 

  52. Bohnenstengel F, Hofmann U, Eichelbaum M, et al. Characterization of the cytochrome P450 involved in side-chain oxidation of cyclophosphamide in humans. Eur J Clin Pharmacol 1996; 51: 297–301

    Article  PubMed  CAS  Google Scholar 

  53. Boddy AV, Furtun Y, Sardas S, et al. Individual variation in the activation and inactivation of metabolic pathways of cyclophosphamide. J Natl Cancer Inst 1992; 84: 1744–8

    Article  PubMed  CAS  Google Scholar 

  54. Busse D, Busch FW, Bohnenstengel F, et al. Dose escalation of cyclophosphamide in patients with breast cancer: consequences for pharmacokinetics and metabolism. J Clin Oncol 1997; 15: 1885–96

    PubMed  CAS  Google Scholar 

  55. Busse D, Busch FW, Schweizer E, et al. Fractionated administration of high-dose cyclophosphamide: influence on dosedependent changes in pharmacokinetics and metabolism. Cancer Chemother Pharmacol 1999; 43: 263–8

    Article  PubMed  CAS  Google Scholar 

  56. Joqueviel C, Martino R, Gilard V, et al. Urinary excretion of cyclophosphamide in humans, determined by phosphorous-31 nuclear magnetic resonance spectroscopy. Drug Metab Dispos 1998; 26: 418–28

    PubMed  CAS  Google Scholar 

  57. Ren S, Kalhorn TF, McDonald GB, et al. Pharmacokinetics of cyclophosphamide and its metabolites in bone marrow transplantation patients. Clin Pharmacol Ther 1998; 64: 289–301

    Article  PubMed  CAS  Google Scholar 

  58. Tasso MJ, Boddy AV, Price L, et al. Pharmacokinetics and metabolism of cyclophosphamide in paediatric patients. Cancer Chemother Pharmacol 1992; 30: 207–11

    Article  PubMed  CAS  Google Scholar 

  59. Yule SM, Boddy AV, Cole M, et al. Cyclophosphamide metabolism in children. Cancer Res 1995; 55: 803–9

    PubMed  CAS  Google Scholar 

  60. Borner K, Kisro J, Bruggemann SK, et al. Metabolism of ifosfamide to chloroacetaldehyde contributes to antitumor activity in vivo. Drug Metab Dispos 2000; 28: 573–6

    PubMed  CAS  Google Scholar 

  61. Bruggemann SK, Kisro J, Wagner T. Ifosfamide cytotoxicity on human tumor and renal cells: a role of chloroacetaldehyde in comparison to 4-hydroxyifosfamide. Cancer Res 1997; 57: 2676–80

    PubMed  CAS  Google Scholar 

  62. Lind MJ, McGown AT, Hadfield JA, et al. The effect of ifosfamide and its metabolites on intracellular glutathione levels in vitro and in vivo. Biochem Pharmacol 1989; 38: 1835–40

    Article  PubMed  CAS  Google Scholar 

  63. Hohorst HJ, Ziemann A, Brock N. 4-Ketocyclophosphamide, a metabolite of cyclophosphamide: formation, chemical and biological properties. Arzneimittelforschung 1971; 21: 1254–7

    PubMed  CAS  Google Scholar 

  64. Takamizawa A, Tochino Y, Hamashima Y, et al. Studies on cyclophosphamide metabolites and their related compounds: I. Chem Pharm Bull (Tokyo) 1972; 20: 1612–6

    Article  CAS  Google Scholar 

  65. Hill DL, Laster WR, Struck RF. Enzymatic metabolism of cyclophosphamide and nicotine and production of a toxic cyclophosphamide metabolite. Cancer Res 1972; 32: 658–65

    PubMed  CAS  Google Scholar 

  66. Dockham PA, Lee MO, Sladek NE. Identification of human liver aldehyde dehydrogenases that catalyze the oxidation of aldophosphamide and retinaldehyde. Biochem Pharmacol 1992; 43: 2453–69

    Article  PubMed  CAS  Google Scholar 

  67. Manthey CL, Sladek NE. Aldehyde dehydrogenase-catalyzed bioinactivation of cyclophosphamide. Prog Clin Biol Res 1989; 290: 49–63

    PubMed  CAS  Google Scholar 

  68. Giorgianni F, Bridson PK, Sorrentino BP, et al. Inactivation of aldophosphamide by human aldehyde dehydrogenase isozyme 3. Biochem Pharmacol 2000; 60: 325–38

    Article  PubMed  CAS  Google Scholar 

  69. Von Eitzen U, Meier-Tackmann D, Agarwal DP, et al. Detoxification of cyclophosphamide by human aldehyde dehydrogenase isozymes. Cancer Lett 1994; 76: 45–9

    Article  Google Scholar 

  70. Sladek NE. Aldehyde dehydrogenase-mediated cellular relative insensitivity to the oxazaphosphorines. Curr Pharm Des 1999; 5: 607–62

    PubMed  CAS  Google Scholar 

  71. Cox PJ, Phillips BJ, Thomas P. Studies on the selective action of cyclophosphamide (NSC-26271): inactivation of the hydroxylated metabolite by tissue-soluble enzymes. Cancer Treat Rep 1976; 60: 321–6

    PubMed  CAS  Google Scholar 

  72. Hilton J. Deoxyribonucleic acid crosslinking by 4-hydroxyperoxycyclophosphamide-sensitive and -resistant L1210 cells. Biochem Pharmacol 1984; 33: 1867–72

    Article  PubMed  CAS  Google Scholar 

  73. Sladek NE, Landkamer GJ. Restoration of sensitivity to oxazaphosphorines by inhibitors of aldehyde dehydrogenase activity in cultured oxazaphsphorine-resistant L1 210 and crosslinking agent resistant P388 cell lines. Cancer Res 1985; 45: 1549–55

    PubMed  CAS  Google Scholar 

  74. Moreb J, Schweder M, Suresh A, et al. Overexpression of the human aldehyde dehydrogenase class I results in increased resistance to 4-hydroperoxycyclophosphamide. Cancer Gene Ther 1996; 3: 24–30

    PubMed  CAS  Google Scholar 

  75. Sreerama L, Sladek NE. Identification and characterization of a novel class 3 aldehyde dehydrogenase overexpressed in a human breast adenocarcinoma cell line exhibiting oxazaphosphorine-specific acquired resistance. Biochem Pharmacol 1993; 45: 2487–505

    Article  PubMed  CAS  Google Scholar 

  76. Yoshida A, Dave V, Han H, et al. Enhanced transcription of the cytosolic ALDH gene in cyclophosphamide resistant human carcinoma cells. Adv Exp Med Biol 1993; 328: 63–72

    Article  PubMed  CAS  Google Scholar 

  77. Hilton J. Role of aldehyde dehydrogenase in cyclophosphamide-resistant L1210 leukemia. Cancer Res 1984; 44: 5156–60

    PubMed  CAS  Google Scholar 

  78. Ren S, Kalhorn TF, Slattery JT. Inhibition of human aldehyde dehydrogenase 1 by the 4-hydroxycyclophosphamide degradation product acrolein. Drug Metab Dispos 1999; 27: 133–7

    PubMed  CAS  Google Scholar 

  79. Parekh HK, Sladek NE. NADPH-dependent enzyme-catalyzed reduction of aldophosphamide, the pivotal metabolite of cyclophosphamide. Biochem Pharmacol 1993; 46: 1043–52

    Article  PubMed  CAS  Google Scholar 

  80. Dockham PA, Sreerama L, Sladek NE. Relative contribution of human erythrocyte aldehyde dehydrogenase to the systemic detoxicication of oxazaphosphorines. Drug Metab Dispos 1997; 25: 1436–41

    PubMed  CAS  Google Scholar 

  81. Gamcsik MP, Dolan ME, Andersson BS, et al. Mechanisms of resistance to the toxicity of cyclophosphamide. Curr Pharm Des 1999; 5: 587–605

    PubMed  CAS  Google Scholar 

  82. D’Incaici M, Bonfanti M, Pifferi A, et al. The antitumour activity of alkylating agents is not correlated with the levels of glutathione, glutathione transferase and O6-alkylguanine-DNA-alkyltransferase of human tumour xenografts. Eur J Cancer 1998; 34: 1749–55

    Article  Google Scholar 

  83. Tanner B, Hengstler JG, Dietrich B, et al. Glutathione, glutathione S-transferase alpha and pi, and aldehyde dehydrogenase content in relationship to drug resistance in ovarian cancer. Gynecol Oncol 1997; 65: 54–62

    Article  PubMed  CAS  Google Scholar 

  84. Cheng X, Kigawa J, Minigawa Y, et al. Glutathione-S-transferase-pi expression and glutathione concentration in ovarian carcinoma before and after chemotherapy. Cancer 1997; 79: 521–7

    Article  PubMed  CAS  Google Scholar 

  85. Tew KD. Glutathione-associated enzymes in anticancer drug resistance. Cancer Res 1994; 54: 4313–20

    PubMed  CAS  Google Scholar 

  86. Jardine I, Fenselau C, Appier M, et al. Quantitation by gas chromatography-chemical ionization mass spectrometry of cyclophosphamide, phosphoramide mustard, and nornitrogen mustard in the plasma and urine of patients receiving cyclophosphamide therapy. Cancer Res 1978; 38: 408–15

    PubMed  CAS  Google Scholar 

  87. Yule SM, Pearson ADJ, Boddy AV, et al. Reproducibility of methods relating to cyclophosphamide studies [response]. J Natl Cancer Inst 1993; 85: 1250

    Article  Google Scholar 

  88. Ludeman SM, Ho CK, Boal JH, et al. Carboxyphosphamide: NMR studies of its stability and cell membrane permeability. Drug Metab Dipos 1992; 20: 337–8

    CAS  Google Scholar 

  89. Bagley CM, Bostick FW, DeVita VT. Clinical pharmacology of cyclophosphamide. Cancer Res 1973; 33: 226–33

    PubMed  Google Scholar 

  90. Milsted RAV, Jarman M. Metabolism of high doses of cyclophosphamide. Cancer Chemother Pharmacol 1982; 8: 311–3

    Article  PubMed  CAS  Google Scholar 

  91. Mouridsen HT, Faber O, Skovsted L. The biotransformation of cyclophosphamide in man: analysis of the variation in normal subjects. Acta Pharmacol Toxicol 1974; 35: 98–106

    Article  CAS  Google Scholar 

  92. Sladek NE, Priest J, Doeden D, et al. Plasma half-life and urinary excretion of cyclophosphamide in children. Cancer Treat Rep 1980; 64: 1061–6

    PubMed  CAS  Google Scholar 

  93. Hadidi AHFA, Coulter CEA, Idle JR. Phenotypically deficient urinary elimination of carboxyphoshamide after cyclophosphamide administration to cancer patients. Cancer Res 1988; 48: 5167–71

    PubMed  CAS  Google Scholar 

  94. Jarman M, Milsted RAV, Smyth JF, et al. Comparative metabolism of 2-[bis(2-chloroethyl)amino]tetrahydro-2H-1,3,2-oxazaphosphorine-2-oxide (cyclophosphamide) and its enantiomers in humans. Cancer Res 1979; 39: 2762–7

    PubMed  CAS  Google Scholar 

  95. Chan KK, Hong PS, Tutsch K, et al. Clinical pharmacokinetics of cyclophosphamide and metabolites with and without SR-2508. Cancer Res 1994; 54: 6421–9

    PubMed  CAS  Google Scholar 

  96. Bailey H, Mulcahy RT, Tutsch KD, et al. A phase I study of SR-2508 and cyclophosphamide administered by intravenous injection. Cancer Res 1991; 51: 1099–104

    PubMed  CAS  Google Scholar 

  97. Chen TL, Passos-Coelho JL, Noe DA, et al. Nonlinear pharmacokinetics of cyclophosphamide in patients with metastatic breast cancer receiving high-dose chemotherapy followed by autologous bone marrow transplantation. Cancer Res 1995; 55: 810–6

    PubMed  CAS  Google Scholar 

  98. Cohen JL, Jao JY, Jusko WJ. Pharmacokinetics of cyclophosphamide in man. Br J Pharmacol 1971; 43: 677–80

    Article  PubMed  CAS  Google Scholar 

  99. Fasola G, Lo Greco P, Calori E, et al. Pharmacokinetics of highdose cyclophosphamide for bone marrow transplantation. Haematologica 1991; 76: 120–5

    PubMed  CAS  Google Scholar 

  100. Fuks JZ, Egorin MJ, Aisner J, et al. Cyclophosphamide of dimethylsulfoxide in the treatment of squamous carcinoma of the lung. Cancer Chemother Pharmacol 1981; 6: 117–20

    Article  PubMed  CAS  Google Scholar 

  101. Haubitz M, Bohnenstengel F, Brunkhorst R, et al. Cyclophosphamide pharmacokinetics and dose requirements in patients with renal insufficiency. Kidney Int 2002; 61: 1495–501

    Article  PubMed  CAS  Google Scholar 

  102. Jao JY, Jusko WJ, Cohen JL. Phenobarbital effects on cyclophosphamide pharmacokinetics in man. Cancer Res 1972; 32: 2761–4

    PubMed  CAS  Google Scholar 

  103. Juma FD, Rogers HJ, Trounce JR. Pharmacokinetics of cyclophosphamide and alkylating activity in man after intravenous and oral administration. Br J Clin Pharmacol 1979; 8: 209–17

    Article  PubMed  CAS  Google Scholar 

  104. Mouridsen HT, Jacobsen E. Pharmacokinetics of cyclophosphamide in renal failure. Acta Pharmacol Toxicol 1975; 36: 409–14

    Article  CAS  Google Scholar 

  105. Mouridsen HT, Faber O, Skovsted L. The metabolism of cyclophosphamide: dose dependency and the effect of long-term treatment with cyclophosphamide. Cancer 1976; 37: 665–70

    Article  PubMed  CAS  Google Scholar 

  106. Schuler U, Ehninger G, Wagner T. Repeated high-dose cyclophosphamide administration in bone marrow transplantation: exposure to activated metabolites. Cancer Chemother Pharmacol 1987; 20: 248–52

    Article  PubMed  CAS  Google Scholar 

  107. Tchekmedyian NS, Egorin MJ, Cohen BE, et al. Phase I clinical and pharmacokinetic study of cyclophosphamide administered by five-day continuous intravenous infusion. Cancer Chemother Pharmacol 1986; 18: 33–8

    Article  PubMed  CAS  Google Scholar 

  108. Wagner T, Heydrich D, Bartels H, et al. Effect of damaged liver parenchyma, renal insufficiency and hemodialysis on the pharmacokinetics of cyclophosphamide and its activated metabolites [in German]. Arzneimitelforschung 1980; 30: 1588–92

    CAS  Google Scholar 

  109. Baumann F, Lorenz C, Jaehde U, et al. Determination of cyclophosphamide and its metabolites in human plasma by high-performance liquid chromatography-mass spectrometry. J Chromatogr B Biomed Sci Appl 1999; 729: 297–305

    Article  PubMed  CAS  Google Scholar 

  110. Friedman OM, Boger E. Colorimetric estimation of nitrogen mustards in aqueous media. Anal Chem 1961; 33: 906–10

    Article  CAS  Google Scholar 

  111. Hadidi AHFA, Idle JR. Combined thin-layer chromatographyphotography-densitometry for the quantification of cyclophosphamide and its four principal urinary metabolites. J Chromatogr 1988; 427: 121–30

    Article  PubMed  CAS  Google Scholar 

  112. Hong PS, Srigritsanapol A, Chan KK. Pharmacokinetics of 4-hydroxycylophosphamide and metabolites in the rat. Drug Metab Dispos 1991; 19: 1–7

    PubMed  CAS  Google Scholar 

  113. Borch RF, Millard JA. The mechanism of activation of 4-hydroxycyclophosphamide. J Med Chem 1987; 30: 427–31

    Article  PubMed  CAS  Google Scholar 

  114. Sladek NE, Powers JF, Grage GM. Half-life of oxazaphosphorines in biological fluids. Drug Metab Dispos 1984; 12: 553–9

    PubMed  CAS  Google Scholar 

  115. Huitema ADR, Tibben MM, Kerbush T, et al. High-performance liquid Chromatographic determination of the stabilized cyclophosphamide metabolite 4-hydroxycyclophosphamide in plasma and red blood cells. J Liq Chromatogr Rel Technol 2000; 23: 1725–44

    Article  CAS  Google Scholar 

  116. Baumann F, Preiss R. Cyclophosphamide and related anticancer drugs. J Chromatogr B Biomed Sci Appl 2001; 764: 173–92

    Article  PubMed  CAS  Google Scholar 

  117. Malet-Martino M, Gilard V, Martino R. The analysis of cyclophosphamide and its metabolites. Curr Pharm Des 1999; 5: 561–86

    PubMed  CAS  Google Scholar 

  118. Kalhorn TF, Ren S, Howald WN, et al. Analysis of cyclophosphamide and five metabolites from human plasma using liquid chromatography-mass spectrometry and gas chromatographynitrogen-phosphorus detection. J Chromatogr B Biomed Sci Appl 1999; 732: 287–98

    Article  PubMed  CAS  Google Scholar 

  119. Sadagopan N, Cohen L, Roberts B, et al. Liquid chromatography-tandem mass spectrometric quantitation of cyclophosphamide and its hydroxy metabolite in plasma and tissue for determination of tissue distribution. J Chromatogr B Biomed Sci Appl 2001; 759: 277–84

    Article  PubMed  CAS  Google Scholar 

  120. de Jonge ME, Van Dam SM, Hillebrand MJX, et al. Simultaneous quantification of cyclophosphamide, 4-hydroxycyclophosphamide, N,N′,N″-triethylenethiophosphoramide (thiotepa) and N,N′,N″-triethylenephosphoramide (tepa) in human plasma by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC-MS/MS). J Mass Spectrom 2004; 39: 262–71

    Article  PubMed  CAS  Google Scholar 

  121. Ayash LJ, Wright JE, Tretyakov O, et al. Cyclophosphamide pharmacokinetics: correlation with cardiac toxicity and tumor response. J Clin Oncol 1992; 10: 995–1000

    PubMed  CAS  Google Scholar 

  122. Azagra P, Perez-Ruizo JJ, Alberala V, et al. Populationpharmacokinetics study of high-dose cyclophosphamide in a program of high dose chemotherapy and peripheral blood stem cell transplantation in high risk breast cancer patients. Proc Am Soc Clin Oncol 1998; 17: 81

    Google Scholar 

  123. Batey MA, Wright JG, Azzabi A, et al. Population pharmacokinetics of adjuvant cyclophosphamide, methotrexate and 5-fluorouracil (CMF). Eur J Cancer 2002; 38: 1081–9

    Article  PubMed  CAS  Google Scholar 

  124. Belfayol L, Guillevin L, Louchahi K, et al. Pharmacokinetics of cyclophosphamide in patients with systemic necrotizing angiitis. Fundam Clin Pharmacol 1994; 8: 458–62

    Article  PubMed  CAS  Google Scholar 

  125. Belfayol-Pisanté L, Guillevin L, Tod M, et al. Pharmacokinetics of cyclophosphamide (CP) and 4-OH-CP/aldophosphamide in systemic vasculitis. Fundam Clin Pharmacol 2000; 14: 415–21

    Article  PubMed  Google Scholar 

  126. Bramwell V, Calvert RT, Edwards G, et al. The disposition of cyclophosphamide in a group of myeloma patients. Cancer Chemother Pharmacol 1979; 3: 253–9

    Article  PubMed  CAS  Google Scholar 

  127. de Jonge ME, Huitema ADR, Rodenhuis S, et al. Integrated population pharmacokinetic model of both cyclophosphamide and thiotepa suggesting a mutual drug-drug interaction. J Pharmacokinet Pharmacodyn 2004; 31: 135–56

    Article  PubMed  Google Scholar 

  128. de Jonge ME, Huitema ADR, Van Dam SM, et al. Population pharmacokinetics of cyclophosphamide and its metabolites 4-hydroxycyclophosphamide, phosphoramide mustard and 2-dechloroethylcyclophosphamide in a high-dose combination with thiotepa and carboplatin. Ther Drug Monit. In press

  129. D’Incaici M, Bolis G, Facchinetti T, et al. Decreased half life of cyclophosphamide in patients under continual treatment. Eur J Cancer 1979; 15: 7–10

    Google Scholar 

  130. Edwards G, Calvert RT, Crowther D, et al. Repeated investigations of cyclophosphamide disposition in myeloma patients receiving intermittent chemotherapy. Br J Clin Parmacol 1980; 10: 281–5

    Article  CAS  Google Scholar 

  131. Egorin MJ, Forrest A, Belani CP, et al. A limited sampling strategy for cyclophosphamide pharmacokinetics. Cancer Res 1989; 49: 3129–33

    PubMed  CAS  Google Scholar 

  132. Faber OK, Mouridsen HT, Skovsted L. The biotransformation of cyclophosphamide in man: influence of prednisone. Acta Pharmacol Toxicol (Copenh) 1974; 35: 195–200

    Article  CAS  Google Scholar 

  133. Gheuens E, Slee PH, De Bruijn EA. Bioavailability of cyclophosphamide in the CMF regimen. Onkologie 1990; 13: 203–6

    Article  PubMed  CAS  Google Scholar 

  134. Graham MI, Shaw IC, Souhami RL, et al. Decreased plasma half-life of cyclophosphamide during repeated high-dose administration. Cancer Chemother Pharmacol 1983; 10: 192–3

    Article  PubMed  CAS  Google Scholar 

  135. Hassan M, Svensson USH, Ljungman P, et al. A mechanismbased pharmacokinetic-enzyme model for cyclophosphamide autoinduction in breast cancer patients. Br J Clin Pharmacol 1999; 48: 669–77

    Article  PubMed  CAS  Google Scholar 

  136. Hassan M, Ljungman P, Ringdén O, et al. The effect of busulphan on the pharmacokinetics of cyclophosphamide and its 4-hydroxy metabolite: time interval influence on therapeutic efficacy and therapy-related toxicity. Bone Marrow Transplant 2000; 25: 915–24

    Article  PubMed  CAS  Google Scholar 

  137. Honjo I, Suou T, Hirayama C. Hepatotoxicity of cyclophosphamide in man: pharmacokinetic analysis. Res Commun Chem Pathol Pharmacol 1988; 61: 149–65

    PubMed  CAS  Google Scholar 

  138. Huitema ADR, Mathôt RAA, Tibben MM, et al. A mechanismbased pharmacokinetic model for the cytochrome P450 drug-drug interaction between cyclophosphamide and thioTEPA and the autoinduction of cyclophosphamide. J Pharmacokinet Pharmacodyn 2001; 28: 211–30

    Article  PubMed  CAS  Google Scholar 

  139. Juma FD, Rogers HJ, Trounce JR. The kinetics of salivary elimination of cyclophosphamide in man. Br J Clin Pharmacol 1979; 8: 455–8

    Article  PubMed  CAS  Google Scholar 

  140. Juma FD, Rogers HJ, Trounce JR. The pharmacokinetics of cyclophosphamide, phosphoramide mustard and nor-nitrogen mustard studied by gas chromatography in patients receiving cyclophosphamide therapy. Br J Clin Pharmacol 1980; 10: 327–35

    PubMed  CAS  Google Scholar 

  141. Juma FD, Rogers HJ, Trounce JR. Effect of renal insufficiency on the pharmacokinetics of cyclophosphamide and some of its metabolites. Eur J Clin Pharmacol 1981; 19: 443–51

    Article  PubMed  CAS  Google Scholar 

  142. Juma F, Ogada T. Pharmacokinetics of cyclophosphamide in Kenyan Africans. Br J Clin Pharmacol 1983; 16: 61–3

    Article  PubMed  CAS  Google Scholar 

  143. Juma FD, Koech DK, Rasili EG, et al. Pharmacokinetics of cyclophosphamide in Kenyan African children with lymphoma. Br J Clin Pharmacol 1984; 18: 106–7

    Article  PubMed  CAS  Google Scholar 

  144. Juma FD. Effect of liver failure on the pharmacokinetics of cyclophosphamide. Eur J Clin Pharmacol 1984; 26: 591–3

    Article  PubMed  CAS  Google Scholar 

  145. Moore MJ, Hardy RW, Thiessen JJ, et al. Rapid development of enhanced clearance after high-dose cyclophosphamide. Clin Pharmacol Ther 1988; 44: 622–8

    Article  PubMed  CAS  Google Scholar 

  146. Moore MJ, Ehrlichman C, Thiessen JJ, et al. Variability in the pharmacokinetics of cyclophosphamide, methotrexate and 5-fluorouracil in women receiving adjuvant treatment for breast cancer. Cancer Chemother Pharmacol 1994; 33: 472–6

    Article  PubMed  CAS  Google Scholar 

  147. Mouridsen HT, Witten PL, Frederiksen PL, et al. Studies on the correlation between the rate of biotransformation and haematological toxicity of cyclophosphamide. Acta Pharmacol Toxicol 1978; 43: 328–30

    Article  CAS  Google Scholar 

  148. Petros WP, Broadwater G, Berry D, et al. Association of highdose cyclophosphamide, cisplatin, and carmustine pharmacokinetics with survival, toxicity, and dosing weight in patients with primary breast cancer. Clin Cancer Res 2002; 8: 698–705

    PubMed  CAS  Google Scholar 

  149. Powis G, Reece P, Ahmann DL, et al. Effect of body weight on the pharmacokinetics of cyclophosphamide in breast cancer patients. Cancer Chemother Pharmacol 1987; 20: 219–22

    Article  PubMed  CAS  Google Scholar 

  150. Schuler U, Waidelich P, Kolb H, et al. Pharmacokinetics and metabolism of cyclophosphamide administered after total body irradiation of bone marrow transplant recipients. Eur J Clin Pharmacol 1991; 40: 521–3

    Article  PubMed  CAS  Google Scholar 

  151. Sladek NE, Doeden D, Powers JF, et al. Plasma concentrations of 4-hydroxycyclophosphamide and phosphoramide mustard in patients repeatedly given high doses of cyclophosphamide in preparation for bone marrow transplantation. Cancer Treat Rep 1984; 68: 1247–54

    PubMed  CAS  Google Scholar 

  152. Slattery JT, Kalhorn TF, McDonald GB, et al. Conditioning regimen-dependent disposition of cyclophosphamide and hydroxycyclophosphamide in human marrow transplantation patients. J Clin Oncol 1996; 14: 1484–94

    PubMed  CAS  Google Scholar 

  153. Wilde S, Jetter A, Zaigier M, et al. Population pharmacokinetics of cyclophosphamide, doxorubicin and etoposide in 30 patients with BEACOPP chemotherapy. Int J Clin Pharmacol Ther 2002; 40: 586–8

    PubMed  CAS  Google Scholar 

  154. Wilkinson PM, O’Neill PA, Thatcher N, et al. Pharmacokinetics of high-dose cyclophosphamide in patients with metastatic bronchogenic carcinoma. Cancer Chemother Pharmacol 1983; 11: 196–9

    Article  PubMed  CAS  Google Scholar 

  155. Williams ML, Wainer IW, Granvil CP, et al. Pharmacokinetics of (R)- and (S)-cyclophosphamide and their dechloroethylated metabolites in cancer patients. Chirality 1999; 11: 301–8

    Article  PubMed  CAS  Google Scholar 

  156. Yule SM, Boddy AV, Cole M, et al. Cyclophosphamide pharmacokinetics in children. Br J Clin Pharmacol 1996; 41: 13–9

    Article  PubMed  CAS  Google Scholar 

  157. Yule SM, Price L, Cole M, et al. Cyclophosphamide metabolism in children with Fanconi’s anaemia. Bone Marrow Transplant 1999; 24: 123–8

    Article  PubMed  CAS  Google Scholar 

  158. Yule SM, Price L, Cole M, et al. Cyclophosphamide metabolism in children following a 1-h and a 24-h infusion. Cancer Chemother Pharmacol 2001; 47: 222–8

    Article  PubMed  CAS  Google Scholar 

  159. Yule SM, Price L, McMahon AD, et al. Cyclophosphamide metabolism in children with non-Hodgkin’s lymphoma. Clin Cancer Res 2004; 10: 455–60

    Article  PubMed  CAS  Google Scholar 

  160. Struck RF, Alberts DS, Home K, et al. Plasma pharmacokinetics of cyclophosphamide and its cytotoxic metabolites after intravenous versus oral administration in a randomized, crossover trial. Cancer Res 1987; 47: 2723–6

    PubMed  CAS  Google Scholar 

  161. Sandström M, Freijs A, Larsson R, et al. Lack of relationship between systemic exposure for the component drugs of the fluorouracil, epirubicin, and 4-hydroxycyclophosphamide regimen in breast cancer patients. J Clin Oncol 1996; 14: 1581–8

    PubMed  Google Scholar 

  162. McDonald GB, Slattery JT, Bouvier ME, et al. Cyclophosphamide metabolism, liver toxicity, and mortality following hematopoietic stem cell transplantation. Blood 2003; 101: 2043–8

    Article  PubMed  CAS  Google Scholar 

  163. Motzer RJ, Gulati SC, Tong WP, et al. Phase I trial with pharmacokinetic analyses of high-dose carboplatin, etoposide, and cyclophosphamide with autologous bone marrow transplantation in patients with refractory germ cell tumors. Cancer Res 1993; 53: 3730–5

    PubMed  CAS  Google Scholar 

  164. Williams ML, Wainer IW, Embree L, et al. Enantioselective induction of cyclophosphamide metabolism by phenytoin. Chirality 1999; 11: 569–74

    Article  PubMed  CAS  Google Scholar 

  165. Wagner T, Feneberg K. Pharmacokinetics and bioavailability of cyclophosphamide from oral formulations. Arzneimittelforschung 1984; 34: 313–6

    PubMed  CAS  Google Scholar 

  166. Yule SM, Price L, Pearson ADJ, et al. Cyclophosphamide and ifosfamide metabolites in the cerebrospinal fluid in children. Clin Cancer Res 1997; 3: 1985–92

    PubMed  CAS  Google Scholar 

  167. Gervot L, Rochat B, Gautier JC, et al. Human CYP2B6: expression, inducibility and catalytic activities. Pharmacogenetics 1999; 9: 295–306

    Article  PubMed  CAS  Google Scholar 

  168. Lindley C, Hamilton G, McCune JS, et al. The effect of cyclophosphamide with and without dexamethasone on cytochrome P450 3A4 and 2B6 in human hepatocytes. Drug Metab Dispos 2002; 30: 814–21

    Article  PubMed  CAS  Google Scholar 

  169. Martin H, Sarsat JP, De Waziers I, et al. Induction of cytochrome P450 2B6 and 3A4 expression by phenobarbital and cyclophosphamide in cultured human liver slices. Pharm Res 2003; 20: 557–68

    Article  PubMed  CAS  Google Scholar 

  170. Xie HJ, Lundgren S, Broberg U, et al. Effect of cyclophosphamide on gene expression of cytochrome P450 and β-actin in the HL-60 cell line. Eur J Pharmacol 2002; 449: 197–205

    Article  PubMed  CAS  Google Scholar 

  171. Nieto Y, Xu X, Cagnoni PJ, et al. Nonpredictable pharmacokinetic behaviour of high-dose cyclophosphamide in combination with cisplatin and 1,3-bis(2-chloroethyl)-1-nitrosurea. Clin Cancer Res 1999; 5: 747–51

    PubMed  CAS  Google Scholar 

  172. Van Der Wall E, Beijnen JH, Rodenhuis S. High-dose chemotherapy for solid tumors. Cancer Treat Rev 1995; 21: 105–32

    Article  PubMed  Google Scholar 

  173. Brock N, Gross R, Hohorst HJ, et al. Activation of cyclophosphamide in man and animals. Cancer 1971; 27: 1512–29

    Article  PubMed  CAS  Google Scholar 

  174. Hortobagyi GN. What is the role of high-dose chemotherapy in the era of targeted therapies? J Clin Oncol 2004; 22: 2263–6

    Article  PubMed  CAS  Google Scholar 

  175. Yu LJ, Drewes P, Gustafsson K, et al. In vivo modulation of alternative pathways of P-450-catalyzed cyclophosphamide metabolism: impact on pharmacokinetics and antitumor activity. J Pharmacol Exp Ther 1999; 288: 928–37

    PubMed  CAS  Google Scholar 

  176. Faber OK, Mouridsen HT, Skovsted L. The effect of chloramphenicol and sulphaphenazole on the biotransformation of cyclophosphamide in man. Br J Clin Pharmacol 1975; 2: 281–5

    Article  PubMed  CAS  Google Scholar 

  177. Carlens S, Ringden O, Aschan J, et al. Risk factors in bone marrow transplant recipients with leukaemia: increased relapse risk in patients treated with ciprofloxacin for gut decontamination. Clin Transplant 1998; 12: 84–92

    PubMed  CAS  Google Scholar 

  178. Yule SM, Walker D, Cole M, et al. The effect of fluconazole on cyclophosphamide metabolism in children. Drug Metab Dispos 1999; 27: 417–21

    PubMed  CAS  Google Scholar 

  179. Marr KA, Leisenring W, Crippa F, et al. Cyclophosphamide metabolism is affected by azole antifungals. Blood 2004; 103: 1557–9

    Article  PubMed  CAS  Google Scholar 

  180. Huitema ADR, Kerbusch T, Tibben MM, et al. Reduction of cyclophosphamide-bioactivation by thiotepa: critical sequence-dependency in high-dose chemotherapy regimens. Cancer Chemother Pharmacol 2000; 46: 119–27

    Article  PubMed  CAS  Google Scholar 

  181. Rae JM, Soukhova NV, Flockhart DA, et al. Triethylenethiophosphoramide is a specific inhibitor of cytochrome P450 2B6: implications for cyclophosphamide metabolism. Drug Metab Dispos 2002; 30: 525–30

    Article  PubMed  CAS  Google Scholar 

  182. Gilbert CJ, Petros WP, Vredenburgh J, et al. Pharmacokinetic interaction between ondansetron and cyclophosphamide during high-dose chemotherapy for breast cancer. Cancer Chemother Pharmacol 1998; 42: 497–503

    Article  PubMed  CAS  Google Scholar 

  183. Cagnoni PJ, Matthes S, Day TC, et al. Modification of the pharmacokinetics of high-dose cyclophosphamide and cisplatin by antiemetics. Bone Marrow Transplant 1999; 24: 1–4

    Article  PubMed  CAS  Google Scholar 

  184. de Jonge ME, Huitema ADR, Van Dam SM, et al. Significant induction of cyclophosphamide and thiotepa metabolism by phenytoin. Cancer Chemother Pharmacol 2005; 55(5): 507–10

    Article  PubMed  Google Scholar 

  185. Ren S, Slattery JT. Inhibition of carboxyethylphosphoramide mustard formation from 4-hydroxycyclophosphamide by carmustine. AAPS PharmSci 1999; 1: E 14

    Article  CAS  Google Scholar 

  186. Ayash LJ, Hunt M, Antman K, et al. Hepatic venoocclusive disease in autologous bone marrow transplantation of solid tumors and lymphomas. J Clin Oncol 1990; 8: 1699–706

    PubMed  CAS  Google Scholar 

  187. Shimada T, Yamazaki H, Mimura M, et al. Interindividual variations in human liver cytochrome P450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 1994; 270: 414–23

    PubMed  CAS  Google Scholar 

  188. Forrester LM, Henderson CJ, Glancey MJ, et al. Relative expression of cytochrome P450 isoenzymes in human liver and association with the metabolism of drugs and xenobiotics. Biochem J 1992; 281: 359–68

    PubMed  CAS  Google Scholar 

  189. Yoshida A. Molecular genetics of human aldehyde dehydrogenase. Pharmacogenetics 1992; 2: 139–47

    Article  PubMed  CAS  Google Scholar 

  190. Yoshida A, Davé V, Ward RJ, et al. Cytosolic aldehyde dehydrogenase (ALDH1) variants found in alcohol flushers. Ann Hum Genet 1989; 53: 1–7

    Article  PubMed  CAS  Google Scholar 

  191. Vasiliou V, Pappa A. Polymorphisms of human aldehyde dehydrogenases: consequences for drug metabolism and disease. Pharmacology 2000; 61: 192–8

    Article  PubMed  CAS  Google Scholar 

  192. Vesell ES. Genetic and environmental factors affecting drug disposition in man. Clin Pharmacol Ther 1977; 22: 659–79

    PubMed  CAS  Google Scholar 

  193. Fraiser LH, Kanekal S, Kehrer JP. Cyclophosphamide toxicity: characterizing and avoiding the problem. Drugs 1991; 42: 781–95

    Article  PubMed  CAS  Google Scholar 

  194. Langford CA. Complications of cyclophosphamide therapy. Eur Arch Otorhinolaryngol 1997; 254: 65–72

    Article  PubMed  CAS  Google Scholar 

  195. Watson NA, Notley RG. Urological complications of cyclophosphamide. Br J Urol 1973; 45: 606–9

    Article  PubMed  CAS  Google Scholar 

  196. Hunt KK. Post-cyclophosphamide pneumonitis. N Engl J Med 1972; 287: 668–9

    PubMed  Google Scholar 

  197. DeFronzo RA, Braine H, Colvin M, et al. Water intoxication in men after cyclophosphamide therapy: time course and relation to drug activation. Ann Intern Med 1973; 78: 861–9

    PubMed  CAS  Google Scholar 

  198. Bergsagel DE, Robertson GL, Hasselback R. Effect of cyclophosphamide on advanced lung cell cancer and haematological toxicity of large, intermittent intravenous doses. CMAJ 1968; 98: 532–8

    CAS  Google Scholar 

  199. Letendre L, Hoagland HC, Gertz MA. Hemorraghic cystitis complicating bone marrow transplantation. Mayo Clin Proc 1992; 67: 128–30

    Article  PubMed  CAS  Google Scholar 

  200. Brugieres L, Hartmann O, Travagli JP, et al. Hemorrhagic cystitis following high-dose chemotherapy and bone marrow transplantation in children with malignancies: incidence, clinical course and outcome. J Clin Oncol 1989; 7: 194–9

    PubMed  CAS  Google Scholar 

  201. Brock N, Stekar J, Pohl J, et al. Acrolein, the causative factor of urotoxic side-effects of cyclophosphamide, ifosfamide, trofosfamide and sufosfamide. Arzneimforschung 1979; 29: 659–61

    CAS  Google Scholar 

  202. Cox PJ. Cyclophosphamide cystitis: identification of acrolein as the causative agent. Biochem Pharmacol 1979; 28: 2045–9

    Article  PubMed  CAS  Google Scholar 

  203. Manz I, Dietrich I, Przybylski M, et al. Identification and quantification of metabolite conjugates of activated cyclophosphamide and ifosfamide with mesna in urine by ion-pair extraction and fast atom bombardment mass spectrometry. Biomed Mass Spectrom 1985; 12: 545–53

    Article  PubMed  CAS  Google Scholar 

  204. Shepherd JD, Pringle LE, Barnett MJ, et al. Mesna versus hyperhydration for the prevention of cyclophosphamide-induced hemorrhagic cystitis in bone marrow transplantation. J Clin Oncol 1991; 9: 2016–20

    PubMed  CAS  Google Scholar 

  205. Vose JM, Reed EC, Pippert GC, et al. Mesna compared with continuous bladder irrigation as uroprotection during highdose chemotherapy and transplantation: a randomized trial. J Clin Oncol 1993; 11: 1306–10

    PubMed  CAS  Google Scholar 

  206. McDonald GB, Hinds MS, Fisher LD, et al. Veno-occlusive disease of the liver and multiorgan failure after bone marrow transplantation: a cohort study of 355 patients. Ann Intern Med 1993; 118: 255–67

    PubMed  CAS  Google Scholar 

  207. Nevill TJ, Barnett MJ, Klingemann HG, et al. Regimen-related toxicity of a busulphan-cyclophosphamide conditioning regimen in 70 patients undergoing allogeneic bone marrow transplantation. J Clin Oncol 1991; 9: 1224–32

    PubMed  CAS  Google Scholar 

  208. Rees KR, Tarlow MJ. The hepatotoxic action of allyl formate. Biochem J 1967; 104: 757–61

    PubMed  CAS  Google Scholar 

  209. DeLeve LD. Cellular target of cyclophosphamide toxicity in the murine liver: role of glutathione and site of metabolic activation. Hepatology 1996; 24: 830–7

    Article  PubMed  CAS  Google Scholar 

  210. Scott TR, Kirsch RE. Inhibition of rat liver glutathione S-transferase isoenzymes by acrolein. Biochem Int 1988; 16: 439–42

    PubMed  CAS  Google Scholar 

  211. Goldberg MA, Antin JH, Guinan EC, et al. Cyclophosphamide cardiotoxicity: an analysis of dosing as a risk factor. Blood 1986; 68: 1114–8

    PubMed  CAS  Google Scholar 

  212. Gottdiender JS, Appelbaum FR, Ferrans VJ, et al. Cardiotoxicity associated with high-dose cyclophosphamide therapy. Arch Intern Med 1981; 141: 758–63

    Article  Google Scholar 

  213. Braverman AC, Antin JH, Plappert MT, et al. Cyclophosphamide cardiotoxicity in bone marrow transplantation: a prospective evaluation of new drug dosing regimens. J Clin Oncol 1991; 9: 1215–23

    PubMed  CAS  Google Scholar 

  214. Levine ES, Friedman HS, Griffith OW, et al. Cardiac cell toxicity induced by 4-hydroxyperoxycyclophosphamide is modulated by glutathione. Cardiovasc Res 1993; 27: 1248–53

    Article  PubMed  CAS  Google Scholar 

  215. Friedman HS, Colvin OM, Aisaka K, et al. Glutathione protects cardiac and skeletal muscle from cyclophosphamide-induced toxicity. Cancer Res 1990; 50: 2455–62

    PubMed  CAS  Google Scholar 

  216. Anthony LB, Long QC, Nickel L, et al. Limited sampling model predicts cyclophosphamide area under the curve but not cyclophosphamide metabolite exposure [abstract]. Proc Ass Clin Oncol 1990; 9: 70

    Google Scholar 

  217. Huitema ADR, Spaander M, Mathôt RAA, et al. Relationship between exposure and toxicity in high-dose chemotherapy with cyclophosphamide, thioTEPA and carboplatin. Ann Oncol 2002; 13: 374–84

    Article  PubMed  CAS  Google Scholar 

  218. Zucchetti M, Zambetti M, Hartley JM, et al. Lack of bone marrow toxicity of high-dose cyclophosphamide associated with inefficient drug metabolism. Ann Oncol 1993; 4: 895–7

    PubMed  CAS  Google Scholar 

  219. de Jonge ME, Huitema ADR, Van Dam SM, et al. Pharmacokinetically guided dosing of cyclophosphamide, thiotepa and carboplatin in high dose chemotherapy [abstract]. Proc Am Soc Clin Oncol 2003; 22: 140

    Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Dutch Cancer Society (project NKI 2001-2420). The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milly E. de Jonge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Jonge, M.E., Huitema, A.D.R., Rodenhuis, S. et al. Clinical Pharmacokinetics of Cyclophosphamide. Clin Pharmacokinet 44, 1135–1164 (2005). https://doi.org/10.2165/00003088-200544110-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200544110-00003

Keywords

Navigation