Skip to main content

Advertisement

Log in

Ocular Drug Delivery

  • Review Article
  • Theme: Established Drug Delivery Technologies: Successes and Challenges
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Ocular drug delivery has been a major challenge to pharmacologists and drug delivery scientists due to its unique anatomy and physiology. Static barriers (different layers of cornea, sclera, and retina including blood aqueous and blood–retinal barriers), dynamic barriers (choroidal and conjunctival blood flow, lymphatic clearance, and tear dilution), and efflux pumps in conjunction pose a significant challenge for delivery of a drug alone or in a dosage form, especially to the posterior segment. Identification of influx transporters on various ocular tissues and designing a transporter-targeted delivery of a parent drug has gathered momentum in recent years. Parallelly, colloidal dosage forms such as nanoparticles, nanomicelles, liposomes, and microemulsions have been widely explored to overcome various static and dynamic barriers. Novel drug delivery strategies such as bioadhesive gels and fibrin sealant-based approaches were developed to sustain drug levels at the target site. Designing noninvasive sustained drug delivery systems and exploring the feasibility of topical application to deliver drugs to the posterior segment may drastically improve drug delivery in the years to come. Current developments in the field of ophthalmic drug delivery promise a significant improvement in overcoming the challenges posed by various anterior and posterior segment diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ananthula HK, Vaishya RD, Barot M, Mitra AK. Duane's Ophthalmology. In: Tasman W, Jaeger EA, editors. Bioavailability. Philadelphia: Lippincott Williams & Wilkins; 2009.

    Google Scholar 

  2. Gipson IK, Argueso P. Role of mucins in the function of the corneal and conjunctival epithelia. Int Rev Cytol. 2003;231:1–49.

    Article  CAS  PubMed  Google Scholar 

  3. Ahmed I. The noncorneal route in ocular drug delivery. In: Mitra AK, editor. Ophthalmic drug delivery systems. New York: Marcel Dekker; 2003. pp. 335–63.

    Chapter  Google Scholar 

  4. Klyce SD, Crosson CE. Transport processes across the rabbit corneal epithelium: a review. Curr Eye Res. 1985;4(4):323–31.

    Article  CAS  PubMed  Google Scholar 

  5. McLaughlin BJ, Caldwell RB, Sasaki Y, Wood TO. Freeze-fracture quantitative comparison of rabbit corneal epithelial and endothelial membranes. Curr Eye Res. 1985;4(9):951–61.

    Article  CAS  PubMed  Google Scholar 

  6. Barar J, Javadzadeh AR, Omidi Y. Ocular novel drug delivery: impacts of membranes and barriers. Expert Opin Drug Deliv. 2008;5(5):567–81.

    Article  CAS  PubMed  Google Scholar 

  7. Sunkara GKU. Membrane transport processes in the eye. In: Mitra AK, editor. Ophthalmic drug delivery systems. New York: Marcel Dekker, Inc; 2003. pp. 13–58.

    Chapter  Google Scholar 

  8. Saha P, Kim KJ, Lee VH. A primary culture model of rabbit conjunctival epithelial cells exhibiting tight barrier properties. Curr Eye Res. 1996;15(12):1163–9.

    Article  CAS  PubMed  Google Scholar 

  9. Geroski DH, Edelhauser HF. Transscleral drug delivery for posterior segment disease. Adv Drug Deliv Rev. 2001;52(1):37–48.

    Article  CAS  PubMed  Google Scholar 

  10. Kim SH, Lutz RJ, Wang NS, Robinson MR. Transport barriers in transscleral drug delivery for retinal diseases. Ophthalmic Res. 2007;39(5):244–54.

    Article  CAS  PubMed  Google Scholar 

  11. Pitkanen L, Ranta VP, Moilanen H, Urtti A. Permeability of retinal pigment epithelium: effects of permeant molecular weight and lipophilicity. Invest Ophthalmol Vis Sci. 2005;46(2):641–6.

    Article  PubMed  Google Scholar 

  12. Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev. 2006;58(11):1131–5.

    Article  CAS  PubMed  Google Scholar 

  13. Kim JH, Kim KW, Kim MH, Yu YS. Intravenously administered gold nanoparticles pass through the blood-retinal barrier depending on the particle size, and induce no retinal toxicity. Nanotechnology. 2009;20(50):505101.

    Article  PubMed  CAS  Google Scholar 

  14. Zhu C, Zhang Y, Pardridge WM. Widespread expression of an exogenous gene in the eye after intravenous administration. Invest Ophthalmol Vis Sci. 2002;43(9):3075–80.

    PubMed  Google Scholar 

  15. Singh SR, Grossniklaus HE, Kang SJ, Edelhauser HF, Ambati BK, Kompella UB. Intravenous transferrin, RGD peptide and dual-targeted nanoparticles enhance anti-VEGF intraceptor gene delivery to laser-induced CNV. Gene Ther. 2009;16(5):645–59.

    Article  CAS  PubMed  Google Scholar 

  16. Suzuki T, Uno T, Chen G, Ohashi Y. Ocular distribution of intravenously administered micafungin in rabbits. J Infect Chemother. 2008;14(3):204–7.

    Article  CAS  PubMed  Google Scholar 

  17. Regnier A, Schneider M, Concordet D, Toutain PL. Intraocular pharmacokinetics of intravenously administered marbofloxacin in rabbits with experimentally induced acute endophthalmitis. Am J Vet Res. 2008;69(3):410–5.

    Article  CAS  PubMed  Google Scholar 

  18. Goldblum D, Rohrer K, Frueh BE, Theurillat R, Thormann W, Zimmerli S. Ocular distribution of intravenously administered lipid formulations of amphotericin B in a rabbit model. Antimicrob Agents Chemother. 2002;46(12):3719–23.

    Article  CAS  PubMed  Google Scholar 

  19. Santulli RJ, Kinney WA, Ghosh S et al. Studies with an orally bioavailable alpha V integrin antagonist in animal models of ocular vasculopathy: retinal neovascularization in mice and retinal vascular permeability in diabetic rats. J Pharmacol Exp Ther. 2008;324(3):894–901.

    Article  CAS  PubMed  Google Scholar 

  20. Shirasaki Y, Miyashita H, Yamaguchi M. Exploration of orally available calpain inhibitors. Part 3: Dipeptidyl alpha-ketoamide derivatives containing pyridine moiety. Bioorg Med Chem. 2006;14(16):5691–8.

    Article  CAS  PubMed  Google Scholar 

  21. Kampougeris G, Antoniadou A, Kavouklis E, Chryssouli Z, Giamarellou H. Penetration of moxifloxacin into the human aqueous humour after oral administration. Br J Ophthalmol. 2005;89(5):628–31.

    Article  CAS  PubMed  Google Scholar 

  22. Sakamoto H, Sakamoto M, Hata Y, Kubota T, Ishibashi T. Aqueous and vitreous penetration of levofloxacin after topical and/or oral administration. Eur J Ophthalmol. 2007;17(3):372–6.

    CAS  PubMed  Google Scholar 

  23. Shirasaki Y. Molecular design for enhancement of ocular penetration. J Pharm Sci. 2008;97(7):2462–96.

    Article  CAS  PubMed  Google Scholar 

  24. Kaur IP, Smitha R, Aggarwal D, Kapil M. Acetazolamide: future perspective in topical glaucoma therapeutics. Int J Pharm. 2002;248(1–2):1–14.

    Article  CAS  PubMed  Google Scholar 

  25. Coppens M, Versichelen L, Mortier E. Treatment of postoperative pain after ophthalmic surgery. Bull Soc Belge Ophtalmol. 2002;(285):27–32.

    PubMed  Google Scholar 

  26. Samtani S, Amaral J, Campos MM, Fariss RN, Becerra SP. Doxycycline-mediated inhibition of choroidal neovascularization. Invest Ophthalmol Vis Sci. 2009;50(11):5098–106.

    Article  PubMed  Google Scholar 

  27. Rajpal, Srinivas A, Azad RV et al. Evaluation of vitreous levels of gatifloxacin after systemic administration in inflamed and non-inflamed eyes. Acta Ophthalmol. 2009;87(6):648–52.

    Article  CAS  PubMed  Google Scholar 

  28. Smith VA, Khan-Lim D, Anderson L, Cook SD, Dick AD. Does orally administered doxycycline reach the tear film? Br J Ophthalmol. 2008;92(6):856–9.

    Article  CAS  PubMed  Google Scholar 

  29. Chong DY, Johnson MW, Huynh TH, Hall EF, Comer GM, Fish DN. Vitreous penetration of orally administered famciclovir. Am J Ophthalmol. 2009;148(1):38–42 e1.

    Article  CAS  PubMed  Google Scholar 

  30. Takahashi K, Saishin Y, King AG, Levin R, Campochiaro PA. Suppression and regression of choroidal neovascularization by the multitargeted kinase inhibitor pazopanib. Arch Ophthalmol. 2009;127(4):494–9.

    Article  CAS  PubMed  Google Scholar 

  31. Kokke KH, Morris JA, Lawrenson JG. Oral omega-6 essential fatty acid treatment in contact lens associated dry eye. Cont Lens Anterior Eye. 2008;31(3):141–6. quiz 70.

    Article  PubMed  Google Scholar 

  32. Ghate D, Edelhauser HF. Ocular drug delivery. Expert Opin Drug Deliv. 2006;3(2):275–87.

    Article  CAS  PubMed  Google Scholar 

  33. Hosseini K, Matsushima D, Johnson J et al. Pharmacokinetic study of dexamethasone disodium phosphate using intravitreal, subconjunctival, and intravenous delivery routes in rabbits. J Ocul Pharmacol Ther. 2008;24(3):301–8.

    Article  CAS  PubMed  Google Scholar 

  34. Weijtens O, Feron EJ, Schoemaker RC et al. High concentration of dexamethasone in aqueous and vitreous after subconjunctival injection. Am J Ophthalmol. 1999;128(2):192–7.

    Article  CAS  PubMed  Google Scholar 

  35. Kim SH, Csaky KG, Wang NS, Lutz RJ. Drug elimination kinetics following subconjunctival injection using dynamic contrast-enhanced magnetic resonance imaging. Pharm Res. 2008;25(3):512–20.

    Article  CAS  PubMed  Google Scholar 

  36. Prausnitz MR, Noonan JS. Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. J Pharm Sci. 1998;87(12):1479–88.

    Article  CAS  PubMed  Google Scholar 

  37. Mitra AK, Anand BS, Duvvuri S. Drug delivery to the eye. In: Fischbarg J, editor. The biology of eye. New York: Academic Press; 2006. pp. 307–51.

    Google Scholar 

  38. Pitkanen L, Ruponen M, Nieminen J, Urtti A. Vitreous is a barrier in nonviral gene transfer by cationic lipids and polymers. Pharm Res. 2003;20(4):576–83.

    Article  PubMed  Google Scholar 

  39. Peeters L, Sanders NN, Braeckmans K et al. Vitreous: a barrier to nonviral ocular gene therapy. Invest Ophthalmol Vis Sci. 2005;46(10):3553–61.

    Article  PubMed  Google Scholar 

  40. Kim H, Robinson SB, Csaky KG. Investigating the movement of intravitreal human serum albumin nanoparticles in the vitreous and retina. Pharm Res. 2009;26(2):329–37.

    Article  CAS  PubMed  Google Scholar 

  41. Dalkara D, Kolstad KD, Caporale N et al. Inner limiting membrane barriers to AAV-mediated retinal transduction from the vitreous. Mol Ther. 2009;17(12):2096–102.

    Article  CAS  PubMed  Google Scholar 

  42. Schoenwald RD, Tandon V, Wurster DE, Barfknecht CF. Significance of melanin binding and metabolism in the activity of 5-acetoxyacetylimino-4-methyl-delta2–1, 3, 4,-thiadiazolin e-2-sulfonamide. Eur J Pharm Biopharm. 1998;46(1):39–50.

    Article  CAS  PubMed  Google Scholar 

  43. Larsson BS. Interaction between chemicals and melanin. Pigment Cell Res. 1993;6(3):127–33.

    Article  CAS  PubMed  Google Scholar 

  44. Leblanc B, Jezequel S, Davies T, Hanton G, Taradach C. Binding of drugs to eye melanin is not predictive of ocular toxicity. Regul Toxicol Pharmacol. 1998;28(2):124–32.

    Article  CAS  PubMed  Google Scholar 

  45. Pitkanen L, Ranta VP, Moilanen H, Urtti A. Binding of betaxolol, metoprolol and oligonucleotides to synthetic and bovine ocular melanin, and prediction of drug binding to melanin in human choroid-retinal pigment epithelium. Pharm Res. 2007;24(11):2063–70.

    Article  PubMed  CAS  Google Scholar 

  46. Salminen L, Imre G, Huupponen R. The effect of ocular pigmentation on intraocular pressure response to timolol. Acta Ophthalmol Suppl. 1985;173:15–8.

    Article  CAS  PubMed  Google Scholar 

  47. Cheruvu NP, Kompella UB. Bovine and porcine transscleral solute transport: influence of lipophilicity and the Choroid-Bruch's layer. Invest Ophthalmol Vis Sci. 2006;47(10):4513–22.

    Article  PubMed  Google Scholar 

  48. Gaudana R, Jwala J, Boddu SH, Mitra AK. Recent perspectives in ocular drug delivery. Pharm Res. 2009;26(5):1197–216.

    Article  CAS  PubMed  Google Scholar 

  49. Mannermaa E, Vellonen KS, Urtti A. Drug transport in corneal epithelium and blood-retina barrier: emerging role of transporters in ocular pharmacokinetics. Adv Drug Deliv Rev. 2006;58(11):1136–63.

    Article  CAS  PubMed  Google Scholar 

  50. Dey S, Anand BS, Patel J, Mitra AK. Transporters/receptors in the anterior chamber: pathways to explore ocular drug delivery strategies. Expert Opin Biol Ther. 2003;3(1):23–44.

    Article  CAS  PubMed  Google Scholar 

  51. Kawazu K, Yamada K, Nakamura M, Ota A. Characterization of cyclosporin A transport in cultured rabbit corneal epithelial cells: P-glycoprotein transport activity and binding to cyclophilin. Invest Ophthalmol Vis Sci. 1999;40(8):1738–44.

    CAS  PubMed  Google Scholar 

  52. Dey S, Patel J, Anand BS et al. Molecular evidence and functional expression of P-glycoprotein (MDR1) in human and rabbit cornea and corneal epithelial cell lines. Invest Ophthalmol Vis Sci. 2003;44(7):2909–18.

    Article  PubMed  Google Scholar 

  53. Dey S, Gunda S, Mitra AK. Pharmacokinetics of erythromycin in rabbit corneas after single-dose infusion: role of P-glycoprotein as a barrier to in vivo ocular drug absorption. J Pharmacol Exp Ther. 2004;311(1):246–55.

    Article  CAS  PubMed  Google Scholar 

  54. Saha P, Yang JJ, Lee VH. Existence of a p-glycoprotein drug efflux pump in cultured rabbit conjunctival epithelial cells. Invest Ophthalmol Vis Sci. 1998;39(7):1221–6.

    CAS  PubMed  Google Scholar 

  55. Yang JJ, Kim KJ, Lee VH. Role of P-glycoprotein in restricting propranolol transport in cultured rabbit conjunctival epithelial cell layers. Pharm Res. 2000;17(5):533–8.

    Article  CAS  PubMed  Google Scholar 

  56. Kennedy BG, Mangini NJ. P-glycoprotein expression in human retinal pigment epithelium. Mol Vis. 2002;8:422–30.

    CAS  PubMed  Google Scholar 

  57. Duvvuri S, Gandhi MD, Mitra AK. Effect of P-glycoprotein on the ocular disposition of a model substrate, quinidine. Curr Eye Res. 2003;27(6):345–53.

    Article  PubMed  Google Scholar 

  58. Constable PA, Lawrenson JG, Dolman DE, Arden GB, Abbott NJ. P-Glycoprotein expression in human retinal pigment epithelium cell lines. Exp Eye Res. 2006;83(1):24–30.

    Article  CAS  PubMed  Google Scholar 

  59. Vellonen KS, Mannermaa E, Turner H et al. Effluxing ABC transporters in human corneal epithelium. J Pharm Sci. 2010;99(2):1087–98.

    CAS  PubMed  Google Scholar 

  60. Zhang T, Xiang CD, Gale D, Carreiro S, Wu EY, Zhang EY. Drug transporter and cytochrome P450 mRNA expression in human ocular barriers: implications for ocular drug disposition. Drug Metab Dispos. 2008;36(7):1300–7.

    Article  CAS  PubMed  Google Scholar 

  61. Karla PK, Quinn TL, Herndon BL, Thomas P, Pal D, Mitra A. Expression of multidrug resistance associated protein 5 (MRP5) on cornea and its role in drug efflux. J Ocul Pharmacol Ther. 2009;25(2):121–32.

    Article  CAS  PubMed  Google Scholar 

  62. Karla PK, Pal D, Quinn T, Mitra AK. Molecular evidence and functional expression of a novel drug efflux pump (ABCC2) in human corneal epithelium and rabbit cornea and its role in ocular drug efflux. Int J Pharm. 2007;336(1):12–21.

    Article  CAS  PubMed  Google Scholar 

  63. Yang JJ, Ann DK, Kannan R, Lee VH. Multidrug resistance protein 1 (MRP1) in rabbit conjunctival epithelial cells: its effect on drug efflux and its regulation by adenoviral infection. Pharm Res. 2007;24(8):1490–500.

    Article  CAS  PubMed  Google Scholar 

  64. Aukunuru JV, Sunkara G, Bandi N, Thoreson WB, Kompella UB. Expression of multidrug resistance-associated protein (MRP) in human retinal pigment epithelial cells and its interaction with BAPSG, a novel aldose reductase inhibitor. Pharm Res. 2001;18(5):565–72.

    Article  CAS  PubMed  Google Scholar 

  65. Karla PK, Earla R, Boddu SH, Johnston TP, Pal D, Mitra A. Molecular expression and functional evidence of a drug efflux pump (BCRP) in human corneal epithelial cells. Curr Eye Res. 2009;34(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  66. Becker U, Ehrhardt C, Daum N et al. Expression of ABC-transporters in human corneal tissue and the transformed cell line, HCE-T. J Ocul Pharmacol Ther. 2007;23(2):172–81.

    Article  CAS  PubMed  Google Scholar 

  67. Katragadda S, Talluri RS, Pal D, Mitra AK. Identification and characterization of a Na+-dependent neutral amino acid transporter, ASCT1, in rabbit corneal epithelial cell culture and rabbit cornea. Curr Eye Res. 2005;30(11):989–1002.

    Article  CAS  PubMed  Google Scholar 

  68. Dun Y, Mysona B, Itagaki S, Martin-Studdard A, Ganapathy V, Smith SB. Functional and molecular analysis of D-serine transport in retinal Muller cells. Exp Eye Res. 2007;84(1):191–9.

    Article  CAS  PubMed  Google Scholar 

  69. Jain-Vakkalagadda B, Pal D, Gunda S, Nashed Y, Ganapathy V, Mitra AK. Identification of a Na+-dependent cationic and neutral amino acid transporter, B(0,+), in human and rabbit cornea. Mol Pharm. 2004;1(5):338–46.

    Article  CAS  PubMed  Google Scholar 

  70. Hosoya K, Horibe Y, Kim KJ, Lee VH. Na(+)-dependent L-arginine transport in the pigmented rabbit conjunctiva. Exp Eye Res. 1997;65(4):547–53.

    Article  CAS  PubMed  Google Scholar 

  71. Jain-Vakkalagadda B, Dey S, Pal D, Mitra AK. Identification and functional characterization of a Na+-independent large neutral amino acid transporter, LAT1, in human and rabbit cornea. Invest Ophthalmol Vis Sci. 2003;44(7):2919–27.

    Article  PubMed  Google Scholar 

  72. Nakauchi T, Ando A, Ueda-Yamada M et al. Prevention of ornithine cytotoxicity by nonpolar side chain amino acids in retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 2003;44(11):5023–8.

    Article  PubMed  Google Scholar 

  73. Gandhi MD, Pal D, Mitra AK. Identification and functional characterization of a Na(+)-independent large neutral amino acid transporter (LAT2) on ARPE-19 cells. Int J Pharm. 2004;275(1–2):189–200.

    Article  CAS  PubMed  Google Scholar 

  74. Anand BS, Mitra AK. Mechanism of corneal permeation of L-valyl ester of acyclovir: targeting the oligopeptide transporter on the rabbit cornea. Pharm Res. 2002;19(8):1194–202.

    Article  CAS  PubMed  Google Scholar 

  75. Xiang CD, Batugo M, Gale DC et al. Characterization of human corneal epithelial cell model as a surrogate for corneal permeability assessment: metabolism and transport. Drug Metab Dispos. 2009;37(5):992–8.

    Article  CAS  PubMed  Google Scholar 

  76. Basu SK, Haworth IS, Bolger MB, Lee VH. Proton-driven dipeptide uptake in primary cultured rabbit conjunctival epithelial cells. Invest Ophthalmol Vis Sci. 1998;39(12):2365–73.

    CAS  PubMed  Google Scholar 

  77. Berger UV, Hediger MA. Distribution of peptide transporter PEPT2 mRNA in the rat nervous system. Anat Embryol (Berl). 1999;199(5):439–49.

    Article  CAS  Google Scholar 

  78. Macha S, Mitra AK. Ocular pharmacokinetics of cephalosporins using microdialysis. J Ocul Pharmacol Ther. 2001;17(5):485–98.

    Article  CAS  PubMed  Google Scholar 

  79. Talluri RS, Katragadda S, Pal D, Mitra AK. Mechanism of L-ascorbic acid uptake by rabbit corneal epithelial cells: evidence for the involvement of sodium-dependent vitamin C transporter 2. Curr Eye Res. 2006;31(6):481–9.

    Article  CAS  PubMed  Google Scholar 

  80. Janoria KG, Hariharan S, Paturi D, Pal D, Mitra AK. Biotin uptake by rabbit corneal epithelial cells: role of sodium-dependent multivitamin transporter (SMVT). Curr Eye Res. 2006;31(10):797–809.

    Article  CAS  PubMed  Google Scholar 

  81. Hariharan S, Janoria KG, Gunda S, Zhu X, Pal D, Mitra AK. Identification and functional expression of a carrier-mediated riboflavin transport system on rabbit corneal epithelium. Curr Eye Res. 2006;31(10):811–24.

    Article  CAS  PubMed  Google Scholar 

  82. Hosoya K, Fujita K, Tachikawa M. Involvement of reduced folate carrier 1 in the inner blood-retinal barrier transport of methyltetrahydrofolate. Drug Metab Pharmacokinet. 2008;23(4):285–92.

    Article  CAS  PubMed  Google Scholar 

  83. Mainardes RM, Urban MC, Cinto PO et al. Colloidal carriers for ophthalmic drug delivery. Curr Drug Targets. 2005;6(3):363–71.

    Article  CAS  PubMed  Google Scholar 

  84. Rabinovich-Guilatt L, Couvreur P, Lambert G, Dubernet C. Cationic vectors in ocular drug delivery. J Drug Target. 2004;12(9–10):623–33.

    Article  CAS  PubMed  Google Scholar 

  85. Schaeffer HE, Krohn DL. Liposomes in topical drug delivery. Invest Ophthalmol Vis Sci. 1982;22(2):220–7.

    CAS  PubMed  Google Scholar 

  86. Nagarsenker MS, Londhe VY, Nadkarni GD. Preparation and evaluation of liposomal formulations of tropicamide for ocular delivery. Int J Pharm. 1999;190(1):63–71.

    Article  CAS  PubMed  Google Scholar 

  87. Hathout RM, Mansour S, Mortada ND, Guinedi AS. Liposomes as an ocular delivery system for acetazolamide: in vitro and in vivo studies. AAPS PharmSciTech. 2007;8(1):1.

    Article  PubMed  Google Scholar 

  88. Amrite AC, Kompella UB. Size-dependent disposition of nanoparticles and microparticles following subconjunctival administration. J Pharm Pharmacol. 2005;57(12):1555–63.

    Article  CAS  PubMed  Google Scholar 

  89. Amrite AC, Edelhauser HF, Singh SR, Kompella UB. Effect of circulation on the disposition and ocular tissue distribution of 20 nm nanoparticles after periocular administration. Mol Vis. 2008;14:150–60.

    CAS  PubMed  Google Scholar 

  90. Cheruvu NP, Amrite AC, Kompella UB. Effect of eye pigmentation on transscleral drug delivery. Invest Ophthalmol Vis Sci. 2008;49(1):333–41.

    Article  PubMed  Google Scholar 

  91. Kompella UB, Sundaram S, Raghava S, Escobar ER. Luteinizing hormone-releasing hormone agonist and transferrin functionalizations enhance nanoparticle delivery in a novel bovine ex vivo eye model. Mol Vis. 2006;12:1185–98.

    CAS  PubMed  Google Scholar 

  92. Cheruvu NP, Amrite AC, Kompella UB. Effect of diabetes on transscleral delivery of celecoxib. Pharm Res. 2009;26(2):404–14.

    Article  CAS  PubMed  Google Scholar 

  93. Peeters L, Lentacker I, Vandenbroucke RE et al. Can ultrasound solve the transport barrier of the neural retina? Pharm Res. 2008;25(11):2657–65.

    Article  CAS  PubMed  Google Scholar 

  94. Martin NE, Kim JW, Abramson DH. Fibrin sealant for retinoblastoma: where are we? J Ocul Pharmacol Ther. 2008;24(5):433–8.

    Article  CAS  PubMed  Google Scholar 

  95. Jiang J, Gill HS, Ghate D et al. Coated microneedles for drug delivery to the eye. Invest Ophthalmol Vis Sci. 2007;48(9):4038–43.

    Article  PubMed  Google Scholar 

  96. Jiang J, Moore JS, Edelhauser HF, Prausnitz MR. Intrascleral drug delivery to the eye using hollow microneedles. Pharm Res. 2009;26(2):395–403.

    Article  CAS  PubMed  Google Scholar 

  97. Zderic V, Clark JI, Martin RW, Vaezy S. Ultrasound-enhanced transcorneal drug delivery. Cornea. 2004;23(8):804–11.

    Article  PubMed  Google Scholar 

  98. Vaka SR, Sammeta SM, Day LB, Murthy SN. Transcorneal iontophoresis for delivery of ciprofloxacin hydrochloride. Curr Eye Res. 2008;33(8):661–7.

    Article  CAS  PubMed  Google Scholar 

  99. Frucht-Pery J, Raiskup F, Mechoulam H, Shapiro M, Eljarrat-Binstock E, Domb A. Iontophoretic treatment of experimental pseudomonas keratitis in rabbit eyes using gentamicin-loaded hydrogels. Cornea. 2006;25(10):1182–6.

    Article  PubMed  Google Scholar 

  100. Voigt M, de Kozak Y, Halhal M, Courtois Y, Behar-Cohen F. Down-regulation of NOSII gene expression by iontophoresis of anti-sense oligonucleotide in endotoxin-induced uveitis. Biochem Biophys Res Commun. 2002;295(2):336–41.

    Article  CAS  PubMed  Google Scholar 

  101. Raiskup-Wolf F, Eljarrat-Binstock E, Rehak M, Domb A, Frucht-Pery J. Transcorneal and transscleral iontophoresis of the dexamethasone phosphate into the rabbit eye. Cesk Slov Oftalmol. 2007;63(5):360–8.

    CAS  PubMed  Google Scholar 

  102. Eljarrat-Binstock E, Orucov F, Frucht-Pery J, Pe'er J, Domb AJ. Methylprednisolone delivery to the back of the eye using hydrogel iontophoresis. J Ocul Pharmacol Ther. 2008;24(3):344–50.

    Article  CAS  PubMed  Google Scholar 

  103. Eljarrat-Binstock E, Domb AJ, Orucov F, Dagan A, Frucht-Pery J, Pe'er J. In vitro and in vivo evaluation of carboplatin delivery to the eye using hydrogel-iontophoresis. Curr Eye Res. 2008;33(3):269–75.

    Article  CAS  PubMed  Google Scholar 

  104. Eljarrat-Binstock E, Domb AJ, Orucov F, Frucht-Pery J, Pe'er J. Methotrexate delivery to the eye using transscleral hydrogel iontophoresis. Curr Eye Res. 2007;32(7–8):639–46.

    Article  CAS  PubMed  Google Scholar 

  105. Hollo G, Whitson JT, Faulkner R et al. Concentrations of betaxolol in ocular tissues of patients with glaucoma and normal monkeys after 1 month of topical ocular administration. Invest Ophthalmol Vis Sci. 2006;47(1):235–40.

    Article  PubMed  Google Scholar 

  106. Acheampong AA, Shackleton M, John B, Burke J, Wheeler L, Tang-Liu D. Distribution of brimonidine into anterior and posterior tissues of monkey, rabbit, and rat eyes. Drug Metab Dispos. 2002;30(4):421–9.

    Article  CAS  PubMed  Google Scholar 

  107. Koevary SB. Pharmacokinetics of topical ocular drug delivery: potential uses for the treatment of diseases of the posterior segment and beyond. Curr Drug Metab. 2003;4(3):213–22.

    Article  CAS  PubMed  Google Scholar 

  108. Koeberle MJ, Hughes PM, Skellern GG, Wilson CG. Pharmacokinetics and disposition of memantine in the arterially perfused bovine eye. Pharm Res. 2006;23(12):2781–98.

    Article  CAS  PubMed  Google Scholar 

  109. Majumdar S, Hingorani T, Srirangam R, Gadepalli RS, Rimoldi JM, Repka MA. Transcorneal permeation of L- and D-aspartate ester prodrugs of acyclovir: delineation of passive diffusion versus transporter involvement. Pharm Res. 2009;26(5):1261–9.

    Article  CAS  PubMed  Google Scholar 

  110. Anand BS, Katragadda S, Nashed YE, Mitra AK. Amino acid prodrugs of acyclovir as possible antiviral agents against ocular HSV-1 infections: interactions with the neutral and cationic amino acid transporter on the corneal epithelium. Curr Eye Res. 2004;29(2–3):153–66.

    Article  CAS  PubMed  Google Scholar 

  111. Gunda S, Hariharan S, Mitra AK. Corneal absorption and anterior chamber pharmacokinetics of dipeptide monoester prodrugs of ganciclovir (GCV): in vivo comparative evaluation of these prodrugs with Val-GCV and GCV in rabbits. J Ocul Pharmacol Ther. 2006;22(6):465–76.

    Article  CAS  PubMed  Google Scholar 

  112. Majumdar S, Nashed YE, Patel K et al. Dipeptide monoester ganciclovir prodrugs for treating HSV-1-induced corneal epithelial and stromal keratitis: in vitro and in vivo evaluations. J Ocul Pharmacol Ther. 2005;21(6):463–74.

    Article  CAS  PubMed  Google Scholar 

  113. Katragadda S, Talluri RS, Mitra AK. Modulation of P-glycoprotein-mediated efflux by prodrug derivatization: an approach involving peptide transporter-mediated influx across rabbit cornea. J Ocul Pharmacol Ther. 2006;22(2):110–20.

    Article  CAS  PubMed  Google Scholar 

  114. Kansara V, Hao Y, Mitra AK. Dipeptide monoester ganciclovir prodrugs for transscleral drug delivery: targeting the oligopeptide transporter on rabbit retina. J Ocul Pharmacol Ther. 2007;23(4):321–34.

    Article  CAS  PubMed  Google Scholar 

  115. Janoria KG, Boddu SH, Wang Z et al. Vitreal pharmacokinetics of biotinylated ganciclovir: role of sodium-dependent multivitamin transporter expressed on retina. J Ocul Pharmacol Ther. 2009;25(1):39–49.

    Article  CAS  PubMed  Google Scholar 

  116. Dalpiaz A, Filosa R, de Caprariis P et al. Molecular mechanism involved in the transport of a prodrug dopamine glycosyl conjugate. Int J Pharm. 2007;336(1):133–9.

    Article  CAS  PubMed  Google Scholar 

  117. Li N, Zhuang C, Wang M, Sun X, Nie S, Pan W. Liposome coated with low molecular weight chitosan and its potential use in ocular drug delivery. Int J Pharm. 2009;379(1):131–8.

    Article  CAS  PubMed  Google Scholar 

  118. Hosny KM. Optimization of gatifloxacin liposomal hydrogel for enhanced transcorneal permeation. J Liposome Res. 2010;20(1):31–7.

    Article  CAS  Google Scholar 

  119. Liu LP, Li YM, Yang L. Preparation of liposomal sparfloxcain lactate and its corneal penetration and antibacterial activity in vitro. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2008;30(5):589–94.

    CAS  PubMed  Google Scholar 

  120. Shen Y, Tu J. Preparation and ocular pharmacokinetics of ganciclovir liposomes. AAPS J. 2007;9(3):E371–7.

    Article  CAS  PubMed  Google Scholar 

  121. Afouna MI, Khattab IS, Reddy IK. Preparation and characterization of demeclocycline liposomal formulations and assessment of their intraocular pressure-lowering effects. Cutan Ocul Toxicol. 2005;24(2):111–24.

    Article  CAS  PubMed  Google Scholar 

  122. Valls R, Vega E, Garcia ML, Egea MA, Valls JO. Transcorneal permeation in a corneal device of non-steroidal anti-inflammatory drugs in drug delivery systems. Open Med Chem J. 2008;2:66–71.

    Article  CAS  PubMed  Google Scholar 

  123. Kim ES, Durairaj C, Kadam RS et al. Human scleral diffusion of anticancer drugs from solution and nanoparticle formulation. Pharm Res. 2009;26(5):1155–61.

    Article  CAS  PubMed  Google Scholar 

  124. Ayalasomayajula SP, Kompella UB. Subconjunctivally administered celecoxib-PLGA microparticles sustain retinal drug levels and alleviate diabetes-induced oxidative stress in a rat model. Eur J Pharmacol. 2005;511(2–3):191–8.

    Article  CAS  PubMed  Google Scholar 

  125. Kompella UB, Bandi N, Ayalasomayajula SP. Subconjunctival nano- and microparticles sustain retinal delivery of budesonide, a corticosteroid capable of inhibiting VEGF expression. Invest Ophthalmol Vis Sci. 2003;44(3):1192–201.

    Article  PubMed  Google Scholar 

  126. Gilbert JA, Simpson AE, Rudnick DE, Geroski DH, Aaberg Jr TM, Edelhauser HF. Transscleral permeability and intraocular concentrations of cisplatin from a collagen matrix. J Control Release. 2003;89(3):409–17.

    Article  CAS  PubMed  Google Scholar 

  127. Eljarrat-Binstock E, Orucov F, Aldouby Y, Frucht-Pery J, Domb AJ. Charged nanoparticles delivery to the eye using hydrogel iontophoresis. J Control Release. 2008;126(2):156–61.

    Article  CAS  PubMed  Google Scholar 

  128. Frucht-Perry J, Assil KK, Ziegler E et al. Fibrin-enmeshed tobramycin liposomes: single application topical therapy of Pseudomonas keratitis. Cornea. 1992;11(5):393–7.

    Article  CAS  PubMed  Google Scholar 

  129. Simpson AE, Gilbert JA, Rudnick DE, Geroski DH, Aaberg Jr TM, Edelhauser HF. Transscleral diffusion of carboplatin: an in vitro and in vivo study. Arch Ophthalmol. 2002;120(8):1069–74.

    CAS  PubMed  Google Scholar 

  130. Van Quill KR, Dioguardi PK, Tong CT et al. Subconjunctival carboplatin in fibrin sealant in the treatment of transgenic murine retinoblastoma. Ophthalmology. 2005;112(6):1151–8.

    Article  PubMed  Google Scholar 

  131. Cruysberg LP, Nuijts RM, Gilbert JA, Geroski DH, Hendrikse F, Edelhauser HF. In vitro sustained human transscleral drug delivery of fluorescein-labeled dexamethasone and methotrexate with fibrin sealant. Curr Eye Res. 2005;30(8):653–60.

    Article  CAS  PubMed  Google Scholar 

  132. Tsui JY, Dalgard C, Van Quill KR et al. Subconjunctival topotecan in fibrin sealant in the treatment of transgenic murine retinoblastoma. Invest Ophthalmol Vis Sci. 2008;49(2):490–6.

    Article  PubMed  Google Scholar 

  133. Misra GP, Singh RS, Aleman TS, Jacobson SG, Gardner TW, Lowe TL. Subconjunctivally implantable hydrogels with degradable and thermoresponsive properties for sustained release of insulin to the retina. Biomaterials. 2009;30(33):6541–7.

    Article  CAS  PubMed  Google Scholar 

  134. Huang X, Lowe TL. Biodegradable thermoresponsive hydrogels for aqueous encapsulation and controlled release of hydrophilic model drugs. Biomacromolecules. 2005;6(4):2131–9.

    Article  CAS  PubMed  Google Scholar 

  135. Kang Derwent JJ, Mieler WF. Thermoresponsive hydrogels as a new ocular drug delivery platform to the posterior segment of the eye. Trans Am Ophthalmol Soc. 2008;106:206–13. discussion 13-4.

    PubMed  Google Scholar 

  136. Furrer E, Berdugo M, Stella C et al. Pharmacokinetics and posterior segment biodistribution of ESBA105, an anti-TNF-alpha single-chain antibody, upon topical administration to the rabbit eye. Invest Ophthalmol Vis Sci. 2009;50(2):771–8.

    Article  PubMed  Google Scholar 

  137. Sigurdsson HH, Konraethsdottir F, Loftsson T, Stefansson E. Topical and systemic absorption in delivery of dexamethasone to the anterior and posterior segments of the eye. Acta Ophthalmol Scand. 2007;85(6):598–602.

    Article  CAS  PubMed  Google Scholar 

  138. Loftsson T, Hreinsdottir D, Stefansson E. Cyclodextrin microparticles for drug delivery to the posterior segment of the eye: aqueous dexamethasone eye drops. J Pharm Pharmacol. 2007;59(5):629–35.

    Article  CAS  PubMed  Google Scholar 

  139. Inoue J, Oka M, Aoyama Y et al. Effects of dorzolamide hydrochloride on ocular tissues. J Ocul Pharmacol Ther. 2004;20(1):1–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research has been supported by grants R01 EY 09171-14 and R01 EY 10659-12 from the National Eye Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashim K. Mitra.

Additional information

Guest Editors: Bruce Aungst and Craig K. Svensson

Ripal Gaudana and Hari Krishna Ananthula contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaudana, R., Ananthula, H.K., Parenky, A. et al. Ocular Drug Delivery. AAPS J 12, 348–360 (2010). https://doi.org/10.1208/s12248-010-9183-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-010-9183-3

Key words

Navigation