Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The complement system as a potential therapeutic target in rheumatic disease

Key Points

  • The complement system provides essential protection against infections but also contributes to the severity of autoimmune diseases

  • The complement system is activated in many rheumatic diseases, as evident from deposition of activation fragments in affected tissue, decreased residual complement function and increased levels of circulating activated complement fragments

  • Although complement is activated in rheumatic diseases, this finding does not mean that complement has a major role in the clinical presentation

  • Systemic complement inhibition is feasible and reasonably safe when the right precautions are taken

  • Complement inhibition has not yet become a common therapeutic strategy for rheumatic disease

Abstract

Complement activation is associated with common rheumatic diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA) and systemic vasculitis. Evidence linking complement activation to these diseases includes the presence of complement deposition in affected tissues, decreased levels of complement proteins and high levels of complement activation fragments in the blood and/or synovial fluid of patients with these diseases, as well as data from experimental models. Eculizumab, a monoclonal antibody that inhibits the complement component C5, is now approved for the treatment of rare conditions involving complement hyperactivation, and the success of this therapy has renewed interest in understanding the utility of complement inhibition in rheumatological practice, particularly for SLE. For example, inhibiting C5 is a potential means of reducing glomerular inflammation in lupus nephritis or treating thrombotic microangiopathy in SLE. The complement system is one of multiple mediators of tissue injury in complex diseases such as SLE, and identifying the disease context in which complement activation has a predominant role is a challenge. An added difficulty in RA is identifying a role for therapeutic complement inhibition within the diverse treatment modalities already available. In this Review, evidence for the therapeutic potential of complement manipulation in rheumatology practice is evaluated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The complement system.
Figure 2: Complement activation in rheumatic disease.

Similar content being viewed by others

References

  1. Ricklin, D., Reis, E. S. & Lambris, J. D. Complement in disease: a defence system turning offensive. Nat. Rev. Nephrol. 12, 383–401 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Morgan, B. P. & Harris, C. L. Complement, a target for therapy in inflammatory and degenerative diseases. Nat. Rev. Drug Discov. 14, 857–877 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Grumach, A. S. & Kirschfink, M. Are complement deficiencies really rare? Overview on prevalence, clinical importance and modern diagnostic approach. Mol. Immunol. 61, 110–117 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Ram, S., Lewis, L. A. & Rice, P. A. Infections of people with complement deficiencies and patients who have undergone splenectomy. Clin. Microbiol. Rev. 23, 740–780 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Baines, A. C. & Brodsky, R. A. Complementopathies. Blood Rev. 31, 213–223 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nester, C. M. et al. Atypical aHUS: state of the art. Mol. Immunol. 67, 31–42 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Legendre, C. M. et al. Terminal complement inhibitor eculizumab in atypical hemolytic–uremic syndrome. N. Engl. J. Med. 368, 2169–2181 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Hillmen, P. et al. Long-term effect of the complement inhibitor eculizumab on kidney function in patients with paroxysmal nocturnal hemoglobinuria. Am. J. Hematol. 85, 553–559 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Hill, A., DeZern, A. E., Kinoshita, T. & Brodsky, R. A. Paroxysmal nocturnal haemoglobinuria. Nat. Rev. Dis. Primers 3, 17028 (2017).

    Article  PubMed  Google Scholar 

  10. Hillmen, P. et al. The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. N. Engl. J. Med. 355, 1233–1243 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Volokhina, E. J., et al. Sensitive, reliable and easy-performed laboratory monitoring of eculizumab therapy in atypical hemolytic uremic syndrome.. Clin. Immunol. 160, 237–243 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Sturfelt, G. & Truedsson, L. Complement in the immunopathogenesis of rheumatic disease. Nat. Rev. Rheumatol. 8, 458–468 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. McInnes, I. B. & Schett, G. Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet 389, 2328–2337 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Walport, M. J., Davies, K. A., Morley, B. J. & Botto, M. Complement deficiency and autoimmunity. Ann. NY Acad. Sci. 815, 267–281 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Kotimaa, J. et al. Sex matters: systemic complement activity of female C57BL/6J and BALB/cJ mice is limited by serum terminal pathway components. Mol. Immunol. 76, 13–21 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Okroj, M., Heinegard, D., Holmdahl, R. & Blom, A. M. Rheumatoid arthritis and the complement system. Ann. Med. 39, 517–530 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Holers, V. M. Targeting mechanisms at sites of complement activation for imaging and therapy. Immunobiology 221, 726–732 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Brodeur, J. P., Ruddy, S., Schwartz, L. B. & Moxley, G. Synovial fluid levels of complement SC5b-9 and fragment Bb are elevated in patients with rheumatoid arthritis. Arthritis Rheum. 34, 1531–1537 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Corvetta, A. et al. Terminal complement complex in synovial tissue from patients affected by rheumatoid arthritis, osteoarthritis and acute joint trauma. Clin. Exp. Rheumatol. 10, 433–438 (1992).

    CAS  PubMed  Google Scholar 

  20. Hogasen, K. et al. Terminal complement pathway activation and low lysis inhibitors in rheumatoid arthritis synovial fluid. J. Rheumatol. 22, 24–28 (1995).

    CAS  PubMed  Google Scholar 

  21. Jose, P. J., Moss, I. K., Maini, R. N. & Williams, T. J. Measurement of the chemotactic complement fragment C5a in rheumatoid synovial fluids by radioimmunoassay: role of C5a in the acute inflammatory phase. Ann. Rheum. Dis. 49, 747–752 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Morgan, B. P., Daniels, R. H. & Williams, B. D. Measurement of terminal complement complexes in rheumatoid arthritis. Clin. Exp. Immunol. 73, 473–478 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Moxley, G. & Ruddy, S. Elevated C3 anaphylatoxin levels in synovial fluids from patients with rheumatoid arthritis. Arthritis Rheum. 28, 1089–1095 (1985).

    Article  CAS  PubMed  Google Scholar 

  24. Swaak, A. J. et al. An analysis of the levels of complement components in the synovial fluid in rheumatic diseases. Clin. Rheumatol. 6, 350–357 (1987).

    Article  CAS  PubMed  Google Scholar 

  25. Kaplan, R. A. et al. Metabolism of C4 and factor B in rheumatoid arthritis. Relation to rheumatoid factor. Arthritis Rheum. 23, 911–920 (1980).

    Article  CAS  PubMed  Google Scholar 

  26. Kemp, P. A. et al. Immunohistochemical determination of complement activation in joint tissues of patients with rheumatoid arthritis and osteoarthritis using neoantigen-specific monoclonal antibodies. J. Clin. Lab. Immunol. 37, 147–162 (1992).

    CAS  PubMed  Google Scholar 

  27. Trouw, L. A., Rispens, T. & Toes, R. E. Beyond citrullination: other post-translational protein modifications in rheumatoid arthritis. Nat. Rev. Rheumatol. 13, 331–339 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Suwannalai, P. et al. Low-avidity anticitrullinated protein antibodies (ACPA) are associated with a higher rate of joint destruction in rheumatoid arthritis. Ann. Rheum. Dis. 73, 270–276 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Trouw, L. A. et al. Anti-cyclic citrullinated peptide antibodies from rheumatoid arthritis patients activate complement via both the classical and alternative pathways. Arthritis Rheum. 60, 1923–1931 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Happonen, K. E. et al. Regulation of complement by cartilage oligomeric matrix protein allows for a novel molecular diagnostic principle in rheumatoid arthritis. Arthritis Rheum. 62, 3574–3583 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Melin Furst, C. et al. The C-type lectin of the aggrecan G3 domain activates complement. PLoS ONE 8, e61407 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Melin Furst, C. et al. Quantitative mass spectrometry to study inflammatory cartilage degradation and resulting interactions with the complement system. J. Immunol. 197, 3415–3424 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Sjoberg, A., Onnerfjord, P., Morgelin, M., Heinegard, D. & Blom, A. M. The extracellular matrix and inflammation: fibromodulin activates the classical pathway of complement by directly binding C1q. J. Biol. Chem. 280, 32301–32308 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Sjoberg, A. P. et al. Short leucine-rich glycoproteins of the extracellular matrix display diverse patterns of complement interaction and activation. Mol. Immunol. 46, 830–839 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Trouw, L. A., Blom, A. M. & Gasque, P. Role of complement and complement regulators in the removal of apoptotic cells. Mol. Immunol. 45, 1199–1207 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Van Schravendijk, M. R. & Dwek, R. A. Interaction of C1q with DNA. Mol. Immunol. 19, 1179–1187 (1982).

    Article  CAS  PubMed  Google Scholar 

  37. Jiang, H. X., Siegel, J. N. & Gewurz, H. Binding and complement activation by C-reactive protein via the collagen-like region of C1q and inhibition of these reactions by monoclonal antibodies to C-reactive protein and C1q. J. Immunol. 146, 2324–2330 (1991).

    CAS  PubMed  Google Scholar 

  38. Banda, N. K. et al. Targeted inhibition of the complement alternative pathway with complement receptor 2 and factor H attenuates collagen antibody-induced arthritis in mice. J. Immunol. 183, 5928–5937 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mehta, G., Scheinman, R. I., Holers, V. M. & Banda, N. K. A new approach for the treatment of arthritis in mice with a novel conjugate of an anti-C5aR1 antibody and C5 siRNA. J. Immunol. 194, 5446–5454 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, Y., Rollins, S. A., Madri, J. A. & Matis, L. A. Anti-C5 monoclonal antibody therapy prevents collagen-induced arthritis and ameliorates established disease. Proc. Natl Acad. Sci. USA 92, 8955–8959 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Banda, N. K. et al. Alternative complement pathway activation is essential for inflammation and joint destruction in the passive transfer model of collagen-induced arthritis. J. Immunol. 177, 1904–1912 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Banda, N. K., Takahashi, K., Wood, A. K., Holers, V. M. & Arend, W. P. Pathogenic complement activation in collagen antibody-induced arthritis in mice requires amplification by the alternative pathway. J. Immunol. 179, 4101–4109 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Ji, H. et al. Arthritis critically dependent on innate immune system players. Immunity 16, 157–168 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Banda, N. K. et al. Role of C3a receptors, C5a receptors, and complement protein C6 deficiency in collagen antibody-induced arthritis in mice. J. Immunol. 188, 1469–1478 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Banda, N. K. et al. Essential role for the lectin pathway in collagen antibody-induced arthritis revealed through use of adenovirus programming complement inhibitor MAp44 expression. J. Immunol. 193, 2455–2468 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Katschke, K. J. Jr et al. A novel inhibitor of the alternative pathway of complement reverses inflammation and bone destruction in experimental arthritis. J. Exp. Med. 204, 1319–1325 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Macor, P. et al. Treatment of experimental arthritis by targeting synovial endothelium with a neutralizing recombinant antibody to C5. Arthritis Rheum. 64, 2559–2567 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Durigutto, P. et al. Prevention of arthritis by locally synthesized recombinant antibody neutralizing complement component C5. PLoS ONE 8, e58696 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Blom, A. M., Nandakumar, K. S. & Holmdahl, R. C4b-binding protein (C4BP) inhibits development of experimental arthritis in mice. Ann. Rheum. Dis. 68, 136–142 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Macedo, A. C. & Isaac, L. Systemic lupus erythematosus and deficiencies of early components of the complement classical pathway. Front. Immunol. 7, 55 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Taylor, P. R. et al. A hierarchical role for classical pathway complement proteins in the clearance of apoptotic cells in vivo. J. Exp. Med. 192, 359–366 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Manderson, A. P., Botto, M. & Walport, M. J. The role of complement in the development of systemic lupus erythematosus. Annu. Rev. Immunol. 22, 431–456 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Martin, M. & Blom, A. M. Complement in removal of the dead — balancing inflammation. Immunol. Rev. 274, 218–232 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Nauta, A. J. et al. Direct binding of C1q to apoptotic cells and cell blebs induces complement activation. Eur. J. Immunol. 32, 1726–1736 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Crow, M. K. & Kirou, K. A. Interferon-alpha in systemic lupus erythematosus. Curr. Opin. Rheumatol. 16, 541–547 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Lood, C. et al. C1q inhibits immune complex-induced interferon-alpha production in plasmacytoid dendritic cells: a novel link between C1q deficiency and systemic lupus erythematosus pathogenesis. Arthritis Rheum. 60, 3081–3090 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Son, M., Santiago-Schwarz, F., Al-Abed, Y. & Diamond, B. C1q limits dendritic cell differentiation and activation by engaging LAIR-1. Proc. Natl Acad. Sci. USA 109, E3160–E3167 (2012).

    Article  PubMed  Google Scholar 

  58. Gomes, R. C. et al. Features of 847 childhood-onset systemic lupus erythematosus patients in three age groups at diagnosis: a Brazilian multicenter study. Arthritis Care Res. (Hoboken) 68, 1736–1741 (2016).

    Article  CAS  Google Scholar 

  59. Lintner, K. E. et al. Early components of the complement classical activation pathway in human systemic autoimmune diseases. Front. Immunol. 7, 36 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Leffler, J., Bengtsson, A. A. & Blom, A. M. The complement system in systemic lupus erythematosus: an update. Ann. Rheum. Dis. 73, 1601–1606 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Dragon-Durey, M. A., Blanc, C., Marinozzi, M. C., van Schaarenburg, R. A. & Trouw, L. A. Autoantibodies against complement components and functional consequences. Mol. Immunol. 56, 213–221 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Trendelenburg, M., Marfurt, J., Gerber, I., Tyndall, A. & Schifferli, J. A. Lack of occurrence of severe lupus nephritis among anti-C1q autoantibody-negative patients. Arthritis Rheum. 42, 187–188 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Trouw, L. A. et al. Anti-C1q autoantibodies deposit in glomeruli but are only pathogenic in combination with glomerular C1q-containing immune complexes. J. Clin. Invest. 114, 679–688 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bao, L., Cunningham, P. N. & Quigg, R. J. Complement in lupus nephritis: new perspectives. Kidney Dis. (Basel) 1, 91–99 (2015).

    Article  Google Scholar 

  65. Sekine, H. et al. Complement component C3 is not required for full expression of immune complex glomerulonephritis in MRL/lpr mice. J. Immunol. 166, 6444–6451 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Jennette, J. C. et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 65, 1–11 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Cornec, D., Cornec-Le Gall, E., Fervenza, F. C. & Specks, U. ANCA-associated vasculitis — clinical utility of using ANCA specificity to classify patients. Nat. Rev. Rheumatol. 12, 570–579 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Falk, R. J., Terrell, R. S., Charles, L. A. & Jennette, J. C. Anti-neutrophil cytoplasmic autoantibodies induce neutrophils to degranulate and produce oxygen radicals in vitro. Proc. Natl Acad. Sci. USA 87, 4115–4119 (1990).

    Article  CAS  PubMed  Google Scholar 

  69. Chen, M., Kallenberg, C. G. & Zhao, M. H. ANCA-negative pauci-immune crescentic glomerulonephritis. Nat. Rev. Nephrol. 5, 313–318 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Xiao, H., Schreiber, A., Heeringa, P., Falk, R. J. & Jennette, J. C. Alternative complement pathway in the pathogenesis of disease mediated by anti-neutrophil cytoplasmic autoantibodies. Am. J. Pathol. 170, 52–64 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schreiber, A. et al. C5a receptor mediates neutrophil activation and ANCA-induced glomerulonephritis. J. Am. Soc. Nephrol. 20, 289–298 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen, M., Jayne, D. R. W. & Zhao, M. H. Complement in ANCA-associated vasculitis: mechanisms and implications for management. Nat. Rev. Nephrol. 13, 359–367 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Xing, G. Q. et al. Complement activation is involved in renal damage in human antineutrophil cytoplasmic autoantibody associated pauci-immune vasculitis. J. Clin. Immunol. 29, 282–291 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Sethi, S. et al. Complement activation in pauci-immune necrotizing and crescentic glomerulonephritis: results of a proteomic analysis. Nephrol. Dial. Transplant. 32, i139–i145 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Yuan, J. et al. C5a and its receptors in human anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Arthritis Res. Ther. 14, R140 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gou, S. J., Yuan, J., Chen, M., Yu, F. & Zhao, M. H. Circulating complement activation in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis. Kidney Int. 83, 129–137 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Camous, L. et al. Complement alternative pathway acts as a positive feedback amplification of neutrophil activation. Blood 117, 1340–1349 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Leffler, J. et al. Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease. J. Immunol. 188, 3522–3531 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Wang, H., Wang, C., Zhao, M. H. & Chen, M. Neutrophil extracellular traps can activate alternative complement pathways. Clin. Exp. Immunol. 181, 518–527 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bekker, P. et al. Characterization of pharmacologic and pharmacokinetic properties of CCX168, a potent and selective orally administered complement 5a receptor inhibitor, based on preclinical evaluation and randomized phase 1 clinical study. PLoS ONE 11, e0164646 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Robinson, W. H. et al. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 12, 580–592 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang, Q. et al. Identification of a central role for complement in osteoarthritis. Nat. Med. 17, 1674–1679 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Struglics, A. et al. The complement system is activated in synovial fluid from subjects with knee injury and from patients with osteoarthritis. Arthritis Res. Ther. 18, 223 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Morgan, B. P., Boyd, C. & Bubeck, D. Molecular cell biology of complement membrane attack. Semin. Cell Dev. Biol. http://dx.doi.org/10.1016/j.semcdb.2017.06.009 (2017).

  85. Bradley, K. et al. Synthesis of classical pathway complement components by chondrocytes. Immunology 88, 648–656 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Ritter, S. Y. et al. Proteomic analysis of synovial fluid from the osteoarthritic knee: comparison with transcriptome analyses of joint tissues. Arthritis Rheum. 65, 981–992 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lepus, C. M. et al. Brief report: carboxypeptidase B serves as a protective mediator in osteoarthritis. Arthritis Rheumatol. 66, 101–106 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bloom, A. C. et al. Deletion of the membrane complement inhibitor CD59a drives age and gender-dependent alterations to bone phenotype in mice. Bone 84, 253–261 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chimenti, M. S., Ballanti, E., Triggianese, P. & Perricone, R. Vasculitides and the complement system: a comprehensive review. Clin. Rev. Allergy Immunol. 49, 333–346 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Jachiet, M. et al. The clinical spectrum and therapeutic management of hypocomplementemic urticarial vasculitis: data from a French nationwide study of fifty-seven patients. Arthritis Rheumatol. 67, 527–534 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Mahler, M., van Schaarenburg, R. A. & Trouw, L. A. Anti-C1q autoantibodies, novel tests, and clinical consequences. Front. Immunol. 4, 117 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wisnieski, J. J. & Jones, S. M. IgG autoantibody to the collagen-like region of Clq in hypocomplementemic urticarial vasculitis syndrome, systemic lupus erythematosus, and 6 other musculoskeletal or rheumatic diseases. J. Rheumatol. 19, 884–888 (1992).

    CAS  PubMed  Google Scholar 

  93. Strait, R. T. et al. IgG1 protects against renal disease in a mouse model of cryoglobulinaemia. Nature 517, 501–504 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Trendelenburg, M. et al. The role of complement in cryoglobulin-induced immune complex glomerulonephritis. J. Immunol. 175, 6909–6914 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Hirt-Minkowski, P. et al. A trial of complement inhibition in a patient with cryoglobulin-induced glomerulonephritis. Case. Rep. Nephrol. Urol. 2, 38–45 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Cicardi, M., Suffritti, C., Perego, F. & Caccia, S. Novelties in the diagnosis and treatment of angioedema. J. Investig. Allergol. Clin. Immunol. 26, 212–221 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Montgomery, R. A. et al. Plasma-derived C1 esterase inhibitor for acute antibody-mediated rejection following kidney transplantation: results of a randomized double-blind placebo-controlled pilot study. Am. J. Transplant. 16, 3468–3478 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Pham, H., Santucci, S., Yang, W. H. Successful use of daily intravenous infusion of C1 esterase inhibitor concentrate in the treatment of a hereditary angioedema patient with ascites, hypovolemic shock, sepsis, renal and respiratory failure. Allergy Asthma Clin. Immunol. http://dx.doi.org/10.1186/s13223-014-0062-9 (2014).

  99. Emmens, R. W. et al. On the value of therapeutic interventions targeting the complement system in acute myocardial infarction. Transl Res. 182, 103–122 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Caliezi, C. et al. C1-esterase inhibitor: an anti-inflammatory agent and its potential use in the treatment of diseases other than hereditary angioedema. Pharmacol. Rev. 52, 91–112 (2000).

    CAS  PubMed  Google Scholar 

  101. Wong, E. K. & Kavanagh, D. Anticomplement C5 therapy with eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome. Transl Res. 165, 306–320 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Benamu, E. & Montoya, J. G. Infections associated with the use of eculizumab: recommendations for prevention and prophylaxis. Curr. Opin. Infect. Dis. 29, 319–329 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Swaak, A. J. et al. Determination of the half-life of C3 in patients and its relation to the presence of C3-breakdown products and/or circulating immune complexes. Rheumatol. Int. 2, 161–166 (1982).

    Article  CAS  PubMed  Google Scholar 

  104. Pascual, M. et al. Metabolism of complement factor D in renal failure. Kidney Int. 34, 529–536 (1988).

    Article  CAS  PubMed  Google Scholar 

  105. Ricklin, D. & Lambris, J. D. New milestones ahead in complement-targeted therapy. Semin. Immunol. 28, 208–222 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Holers, V. M. et al. New therapeutic and diagnostic opportunities for injured tissue-specific targeting of complement inhibitors and imaging modalities. Semin. Immunol. 28, 260–267 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Fridkis-Hareli, M. et al. Design and development of TT30, a novel C3d-targeted C3/C5 convertase inhibitor for treatment of human complement alternative pathway-mediated diseases. Blood 118, 4705–4713 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Atkinson, C. et al. Targeting pathogenic postischemic self-recognition by natural IgM to protect against posttransplantation cardiac reperfusion injury. Circulation 131, 1171–1180 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Grant, E. P. et al. Essential role for the C5a receptor in regulating the effector phase of synovial infiltration and joint destruction in experimental arthritis. J. Exp. Med. 196, 1461–1471 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Vergunst, C. E. et al. Blocking the receptor for C5a in patients with rheumatoid arthritis does not reduce synovial inflammation. Rheumatology (Oxford) 46, 1773–1778 (2007).

    Article  CAS  Google Scholar 

  111. Steinsson, K., Erlendsson, K. & Valdimarsson, H. Successful plasma infusion treatment of a patient with C2 deficiency and systemic lupus erythematosus: clinical experience over forty-five months. Arthritis Rheum. 32, 906–913 (1989).

    CAS  PubMed  Google Scholar 

  112. Mehta, P. et al. SLE with C1q deficiency treated with fresh frozen plasma: a 10-year experience. Rheumatology (Oxford) 49, 823–824 (2010).

    Article  Google Scholar 

  113. Arkwright, P. D., Riley, P., Hughes, S. M., Alachkar, H. & Wynn, R. F. Successful cure of C1q deficiency in human subjects treated with hematopoietic stem cell transplantation. J. Allergy Clin. Immunol. 133, 265–267 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Olsson, R. F. et al. Allogeneic hematopoietic stem cell transplantation in the treatment of human C1q deficiency: the Karolinska experience. Transplantation 100, 1356–1362 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Castellano, G. et al. Maturation of dendritic cells abrogates C1q production in vivo and in vitro. Blood. 103, 3813–3820 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Schwaeble, W. et al. Follicular dendritic cells, interdigitating cells, and cells of the monocyte-macrophage lineage are the C1q-producing sources in the spleen. Identification of specific cell types by in situ hybridization and immunohistochemical analysis. J. Immunol. 155, 4971–4978 (1995).

    CAS  PubMed  Google Scholar 

  117. van Schaarenburg, R. A. et al. The production and secretion of complement component C1q by human mast cells. Mol. Immunol. 78, 164–170 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Bermea, R. S., Sharma, N., Cohen, K. & Liarski, V. M. Use of eculizumab in atypical hemolytic uremic syndrome, complicating systemic lupus erythematosus. J. Clin. Rheumatol. 22, 320–323 (2016).

    Article  PubMed  Google Scholar 

  119. El-Husseini, A. et al. Thrombotic microangiopathy in systemic lupus erythematosus: efficacy of eculizumab. Am. J. Kidney Dis. 65, 127–130 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Raufi, A. G. et al. Atypical hemolytic uremic syndrome secondary to lupus nephritis, responsive to eculizumab. Hematol. Rep. 8, 6625 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Pickering, M. C. et al. Eculizumab as rescue therapy in severe resistant lupus nephritis. Rheumatology (Oxford) 54, 2286–2288 (2015).

    Google Scholar 

  122. Coppo, R. et al. Dramatic effects of eculizumab in a child with diffuse proliferative lupus nephritis resistant to conventional therapy. Pediatr. Nephrol. 30, 167–172 (2015).

    Article  PubMed  Google Scholar 

  123. Strakhan, M. et al. 36-year-old female with catastrophic antiphospholipid syndrome treated with eculizumab: a case report and review of literature. Case. Rep. Hematol. 2014, 704371 (2014).

    PubMed  PubMed Central  Google Scholar 

  124. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01029587 (2017).

  125. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02994927 (2017).

  126. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01363388 (2016).

  127. Jayne, D. R. et al. Randomized trial of C5a receptor inhibitor avacopan in ANCA-associated vasculitis. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2016111179 (2017).

  128. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02384317 (2017).

  129. Rosenblad, T. et al. Eculizumab treatment for rescue of renal function in IgA nephropathy. Pediatr. Nephrol. 29, 2225–2228 (2014).

    Article  PubMed  Google Scholar 

  130. Prohaszka, Z., Nilsson, B., Frazer-Abel, A. & Kirschfink, M. Complement analysis 2016: clinical indications, laboratory diagnostics and quality control. Immunobiology 221, 1247–1258 (2016).

    Article  CAS  PubMed  Google Scholar 

  131. Beurskens, F. J., van Schaarenburg, R. A. & Trouw, L. A. C1q, antibodies and anti-C1q autoantibodies. Mol. Immunol. 68, 6–13 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Seelen, M. A. et al. Functional analysis of the classical, alternative, and MBL pathways of the complement system: standardization and validation of a simple ELISA. J. Immunol. Methods 296, 187–198 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Nilsson, B. & Ekdahl, K. N. Complement diagnostics: concepts, indications, and practical guidelines. Clin. Dev. Immunol. 2012, 962702 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Blom, A. M., Osterborg, A., Mollnes, T. E. & Okroj, M. Antibodies reactive to cleaved sites in complement proteins enable highly specific measurement of soluble markers of complement activation. Mol. Immunol. 66, 164–170 (2015).

    Article  CAS  PubMed  Google Scholar 

  135. Noris, M., Mescia, F. & Remuzzi, G. STEC-HUS, atypical HUS and TTP are all diseases of complement activation. Nat. Rev. Nephrol. 8, 622–633 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Sciascia, S. et al. Expanding the therapeutic options for renal involvement in lupus: eculizumab, available evidence. Rheumatol. Int. http://dx.doi.org/10.1007/s00296-017-3686-5 (2017).

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article, provided substantial contributions to discussions of its content, wrote the article and undertook review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Leendert A. Trouw.

Ethics declarations

Competing interests

M.C.P. declares that he is a scientific adviser for Alexion Pharmaceuticals, Achillion and Ra Pharmaceuticals. A.M.B. declares that she is listed as an inventor on the patent application “Antibodies specific for complement component C4d and uses thereof”. L.A.T. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trouw, L., Pickering, M. & Blom, A. The complement system as a potential therapeutic target in rheumatic disease. Nat Rev Rheumatol 13, 538–547 (2017). https://doi.org/10.1038/nrrheum.2017.125

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2017.125

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing