Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Materials fabrication from Bombyx mori silk fibroin

Abstract

Silk fibroin, derived from Bombyx mori cocoons, is a widely used and studied protein polymer for biomaterial applications. Silk fibroin has remarkable mechanical properties when formed into different materials, demonstrates biocompatibility, has controllable degradation rates from hours to years and can be chemically modified to alter surface properties or to immobilize growth factors. A variety of aqueous or organic solvent-processing methods can be used to generate silk biomaterials for a range of applications. In this protocol, we include methods to extract silk from B. mori cocoons to fabricate hydrogels, tubes, sponges, composites, fibers, microspheres and thin films. These materials can be used directly as biomaterials for implants, as scaffolding in tissue engineering and in vitro disease models, as well as for drug delivery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of material forms fabricated from silk fibroin using both organic solvent– and aqueous-based processing approaches.
Figure 2: Schematic of the silk fibroin extraction procedure.
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Murphy, A.R. & Kaplan, D.L. Biomedical applications of chemically-modified silk fibroin. J. Mat. Chem. 19, 6443–6450 (2009).

    Article  CAS  Google Scholar 

  2. Murphy, A.R., John, P.S. & Kaplan, D.L. Modification of silk fibroin using diazonium coupling chemistry and the effects on hMSC proliferation and differentiation. Biomaterials 29, 2829–2838 (2008).

    Article  CAS  Google Scholar 

  3. Wenk, E. et al. The use of sulfonated silk fibroin derivatives to control binding, delivery and potency of FGF-2 in tissue regeneration. Biomaterials 31, 1403–1413 (2010).

    Article  CAS  Google Scholar 

  4. Vepari, C., Matheson, D., Drummy, L., Naik, R. & Kaplan, D.L. Surface modification of silk fibroin with poly(ethylene glycol) for antiadhesion and antithrombotic applications. J. Biomed. Mat. Res. A 93A, 595–606 (2010).

    CAS  Google Scholar 

  5. Sofia, S., McCarthy, M.B., Gronowicz, G. & Kaplan, D.L. Functionalized silk-based biomaterials for bone formation. J. Biomed. Mat. Res. 54, 139–148 (2001).

    Article  CAS  Google Scholar 

  6. Vepari, C. & Kaplan, D.L. Silk as a biomaterial. Prog. Poly. Sci. 32, 991–1007 (2007).

    Article  CAS  Google Scholar 

  7. Craig, C. & Riekel, C. Comparative architecture of silks, fibrous proteins and their encoding genes in insects and spiders. Comp. Chem. Physiol. B Biochem. Mol. Biol. 133, 493–507 (2002).

    Article  Google Scholar 

  8. Omenetto, F.G. & Kaplan, D.L. New opportunities for an ancient material. Science 329, 528–531 (2010).

    Article  CAS  Google Scholar 

  9. Altman, G.H. et al. Silk-based biomaterials. Biomaterials 24, 401–416 (2003).

    Article  CAS  Google Scholar 

  10. Horan, R.L. et al. In vitro degradation of silk fibroin. Biomaterials 26, 3385–3393 (2005).

    Article  CAS  Google Scholar 

  11. Park, S.H. et al. Relationships between degradability of silk scaffolds and osteogenesis. Biomaterials 31, 6162–6172 (2010).

    Article  CAS  Google Scholar 

  12. Meinel, L. et al. The inflammatory responses to silk films in vitro and in vivo. Biomaterials 26, 147–155 (2005).

    Article  CAS  Google Scholar 

  13. Wray, L.S., Hu, X. & Kaplan, D.L. Effect of processing on silk-based biomaterials: reproducibility and biocompatibility. J. Biomed. Mater. Res. B Appl. Biomater. published online, doi:10.1002/jbm.b.31875 (21 June 2011).

  14. Kim, D.-H. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9, 511–517 (2010).

    Article  CAS  Google Scholar 

  15. Etienne, O. et al. Soft tissue augmentation using silk gels: an in vitro and in vivo study. J. Periodont. 80, 1852–1858 (2009).

    Article  Google Scholar 

  16. Wang, Y. et al. In vivo degradation of three-dimensional silk fibroin scaffolds. Biomaterials 29, 3415–3428 (2008).

    Article  CAS  Google Scholar 

  17. Meinel, L. et al. Silk based biomaterials to heal critical sized femur defects. Bone 39, 922–931 (2006).

    Article  CAS  Google Scholar 

  18. Hu, X. et al. Regulation of silk material structure by temperature-controlled water vapor annealing. Biomacromolecules 12, 1686–1696 (2011).

    Article  CAS  Google Scholar 

  19. Hu, X., Lu, Q., Kaplan, D.L. & Cebe, P. Microphase separation controlled beta-sheet crystallization kinetics in fibrous proteins. Macromolecules 42, 2079–2087 (2009).

    Article  CAS  Google Scholar 

  20. Sung, N.-Y. et al. Effect of gamma irradiation on the structural and physiological properties of silk fibroin. Food Sci. Biotechnol. 18, 228–233 (2009).

    CAS  Google Scholar 

  21. Kojthung, A. et al. Effect of gamma radiation on biodegradation of Bombyx mori silk fibroin. Int. Biodeterior. Biodegrad. 62, 487–490 (2008).

    Article  CAS  Google Scholar 

  22. Lovett, M. et al. Silk fibroin microtubes for blood vessel engineering. Biomaterials 28, 5271–5279 (2007).

    Article  CAS  Google Scholar 

  23. Lovett, M.L., Cannizzaro, C.M., Vunjak-Novakovic, G. & Kaplan, D.L. Gel spinning of silk tubes for tissue engineering. Biomaterials 29, 4650–4657 (2008).

    Article  CAS  Google Scholar 

  24. Lovett, M.L., Rockwood, D.N., Baryshyan, A. & Kaplan, D.L. Simple modular bioreactors for tissue engineering: a system for characterization of oxygen gradients, human mesenchymal stem cell differentiation, and prevascularization. Tissue Eng. Part C Methods. 16, 1565–1573 (2010).

    Article  CAS  Google Scholar 

  25. Kim, U.J. et al. Structure and properties of silk hydrogels. Biomacromolecules 5, 786–792 (2004).

    Article  CAS  Google Scholar 

  26. Yucel, T., Cebe, P. & Kaplan, D.L. Vortex-induced injectable silk fibroin hydrogels. Biophys. J. 97, 2044–2050 (2009).

    Article  CAS  Google Scholar 

  27. Wang, X.Q., Kluge, J.A., Leisk, G.G. & Kaplan, D.L. Sonication-induced gelation of silk fibroin for cell encapsulation. Biomaterials 29, 1054–1064 (2008).

    Article  CAS  Google Scholar 

  28. Leisk, G.G., Lo, T.J., Yucel, T., Lu, Q. & Kaplan, D.L. Electrogelation for protein adhesives. Adv. Mater. 22, 711–715 (2010).

    Article  CAS  Google Scholar 

  29. Yucel, T., Kojic, N., Leisk, G.G., Lo, T.J. & Kaplan, D.L. Non-equilibrium silk fibroin adhesives. J. Struct. Biol. 170, 406–412 (2010).

    Article  CAS  Google Scholar 

  30. Hofmann, S. et al. Silk fibroin as an organic polymer for controlled drug delivery. J. Control Release 111, 219–227 (2006).

    Article  CAS  Google Scholar 

  31. Lawrence, B.D., Marchant, J.K., Pindrus, M.A., Omenetto, F.G. & Kaplan, D.L. Silk film biomaterials for cornea tissue engineering. Biomaterials 30, 1299–1308 (2009).

    Article  CAS  Google Scholar 

  32. Jin, H.J., Park, J., Valluzzi, R., Cebe, P. & Kaplan, D.L. Biomaterial films of Bombyx mori silk fibroin with poly(ethylene oxide). Biomacromolecules 5, 711–717 (2004).

    Article  CAS  Google Scholar 

  33. Wang, X. et al. Silk microspheres for encapsulation and controlled release. J. Control Release 117, 360–370 (2007).

    Article  CAS  Google Scholar 

  34. Wang, X.Q., Yucel, T., Lu, Q., Hu, X. & Kaplan, D.L. Silk nanospheres and microspheres from silk/pva blend films for drug delivery. Biomaterials 31, 1025–1035 (2010).

    Article  CAS  Google Scholar 

  35. Jin, H.J., Fridrikh, S.V., Rutledge, G.C. & Kaplan, D.L. Electrospinning Bombyx mori silk with poly(ethylene oxide). Biomacromolecules 3, 1233–1239 (2002).

    Article  CAS  Google Scholar 

  36. Li, C., Vepari, C., Jin, H.-J., Kim, H.J. & Kaplan, D.L. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 27, 3115–3124 (2006).

    Article  CAS  Google Scholar 

  37. Rockwood, D.N., Akins, R.E., Parrag, I.C., Woodhouse, K.A. & Rabolt, J.F. Culture on electrospun polyurethane scaffolds decreases atrial natriuretic peptide expression by cardiomyocytes in vitro. Biomaterials 29, 4783–4791 (2008).

    Article  CAS  Google Scholar 

  38. Kakade, M.V. et al. Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibers. J. Am. Chem. Soc. 129, 2777–2782 (2007).

    Article  CAS  Google Scholar 

  39. Kim, U.J., Park, J., Kim, H.J., Wada, M. & Kaplan, D.L. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials 26, 2775–2785 (2005).

    Article  CAS  Google Scholar 

  40. Nazarov, R., Jin, H.J. & Kaplan, D.L. Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules 5, 718–726 (2004).

    Article  CAS  Google Scholar 

  41. Rockwood, D.N. et al. Ingrowth of human mesenchymal stem cells into porous silk particle reinforced silk composite scaffolds: an in vitro study. Acta Biomater. 7, 144–151 (2011).

    Article  CAS  Google Scholar 

  42. Zhang, X.H., Reagan, M.R. & Kaplan, D.L. Electrospun silk biomaterial scaffolds for regenerative medicine. Adv. Drug Del. Rev. 61, 988–1006 (2009).

    Article  CAS  Google Scholar 

  43. Kim, H.J., Kim, U.J., Vunjak-Novakovic, G., Min, B.H. & Kaplan, D.L. Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells. Biomaterials 26, 4442–4452 (2005).

    Article  CAS  Google Scholar 

  44. Hofmann, S. et al. Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds. Biomaterials 28, 1152–1162 (2007).

    Article  CAS  Google Scholar 

  45. Kim, H.J. et al. Bone tissue engineering with premineralized silk scaffolds. Bone 42, 1226–1234 (2008).

    Article  CAS  Google Scholar 

  46. Kim, H.J. et al. Bone regeneration on macroporous aqueous-derived silk 3-D scaffolds. Macromol. Biosci. 7, 643–655 (2007).

    Article  CAS  Google Scholar 

  47. Hofmann, S. et al. Cartilage-like tissue engineering using silk scaffolds and mesenchymal stem cells. Tissue Eng. 12, 2729–2738 (2006).

    Article  CAS  Google Scholar 

  48. Tigli, R.S. et al. Comparative chondrogenesis of human cell sources in 3D scaffolds. J. Tiss. Eng. Regen. Med. 3, 348–360 (2009).

    Article  CAS  Google Scholar 

  49. Wang, Y.Z., Blasioli, D.J., Kim, H.J., Kim, H.S. & Kaplan, D.L. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes. Biomaterials 27, 4434–4442 (2006).

    Article  CAS  Google Scholar 

  50. Wang, Y.Z., Kim, U.J., Blasioli, D.J., Kim, H.J. & Kaplan, D.L. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials 26, 7082–7094 (2005).

    Article  CAS  Google Scholar 

  51. Ghosh, S., Laha, M., Mondal, S., Sengupta, S. & Kaplan, D.L. In vitro model of mesenchymal condensation during chondrogenic development. Biomaterials 30, 6530–6540 (2009).

    Article  CAS  Google Scholar 

  52. Mauney, J.R. et al. Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds. Biomaterials 28, 5280–5290 (2007).

    Article  CAS  Google Scholar 

  53. Gil, E.S., Park, S.H., Marchant, J., Omenetto, F. & Kaplan, D.L. Response of human corneal fibroblasts on silk film surface patterns. Macromol. Biosci. 10, 664–673 (2010).

    Article  CAS  Google Scholar 

  54. Soffer, L. et al. Silk-based electrospun tubular scaffolds for tissue-engineered vascular grafts. J. Biomat. Sci.- Poly. Ed. 19, 653–664 (2008).

    Article  CAS  Google Scholar 

  55. Zhang, X.H., Baughman, C.B. & Kaplan, D.L. In vitro evaluation of electrospun silk fibroin scaffolds for vascular cell growth. Biomaterials 29, 2217–2227 (2008).

    Article  CAS  Google Scholar 

  56. Zhang, X.H. et al. Dynamic culture conditions to generate silk-based tissue-engineered vascular grafts. Biomaterials 30, 3213–3223 (2009).

    Article  CAS  Google Scholar 

  57. House, M., Sanchez, C.C., Rice, W.L., Socrate, S. & Kaplan, D.L. Cervical tissue engineering using silk scaffolds and human cervical cells. Tissue Eng. Part A 16, 2101–2112 (2010).

    Article  CAS  Google Scholar 

  58. Schneider, A., Wang, X.Y., Kaplan, D.L., Garlick, J.A. & Egles, C. Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing. Acta Biomater. 5, 2570–2578 (2009).

    Article  CAS  Google Scholar 

  59. Wharram, S.E., Zhang, X.H., Kaplan, D.L. & McCarthy, S.P. Electrospun silk material systems for wound healing. Macromol. Biosci. 10, 246–257 (2010).

    Article  CAS  Google Scholar 

  60. Moreau, J.E. et al. Tissue-engineered bone serves as a target for metastasis of human breast cancer in a mouse model. Cancer Res. 67, 10304–10308 (2007).

    Article  CAS  Google Scholar 

  61. Wang, X.L. et al. A complex 3D human tissue culture system based on mammary stromal cells and silk scaffolds for modeling breast morphogenesis and function. Biomaterials 31, 3920–3929 (2010).

    Article  CAS  Google Scholar 

  62. Wang, X.L. et al. Preadipocytes stimulate ductal morphogenesis and functional differentiation of human mammary epithelial cells on 3D silk scaffolds. Tissue Eng. Part A 15, 3087–3098 (2009).

    Article  CAS  Google Scholar 

  63. Subramanian, B. et al. Tissue-engineered three-dimensional in vitro models for normal and diseased kidney. Tissue Eng. Part A 16, 2821–2831 (2010).

    Article  CAS  Google Scholar 

  64. Altman, G.H. et al. Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 23, 4131–4141 (2002).

    Article  CAS  Google Scholar 

  65. Moreau, J.E., Bramono, D.S., Horan, R.L., Kaplan, D.L. & Altman, G.H. Sequential biochemical and mechanical stimulation in the development of tissue-engineered ligaments. Tissue Eng. Part A 14, 1161–1172 (2008).

    Article  CAS  Google Scholar 

  66. Jiang, X.Q. et al. Mandibular repair in rats with premineralized silk scaffolds and BMP-2-modified bMSCs. Biomaterials 30, 4522–4532 (2009).

    Article  CAS  Google Scholar 

  67. Zhao, J. et al. Apatite-coated silk fibroin scaffolds to healing mandibular border defects in canines. Bone 45, 517–527 (2009).

    Article  CAS  Google Scholar 

  68. Pritchard, E.M., Szybala, C., Boison, D. & Kaplan, D.L. Silk fibroin encapsulated powder reservoirs for sustained release of adenosine. J. Control Release 144, 159–167 (2010).

    Article  CAS  Google Scholar 

  69. Szybala, C. et al. Antiepileptic effects of silk-polymer based adenosine release in kindled rats. Exp. Neurol. 219, 126–135 (2009).

    Article  CAS  Google Scholar 

  70. Wilz, A. et al. Silk polymer-based adenosine release: therapeutic potential for epilepsy. Biomaterials 29, 3609–3616 (2008).

    Article  CAS  Google Scholar 

  71. Wang, X.Q. et al. Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J. Control Release 134, 81–90 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the following researchers for their contributions to these protocols: E.S. Gil, C. Wittmer, H. J. Kim, E.A. Pritchard, X. Wang, J.A. Kluge and F. Omenetto. This work was supported by the National Institutes of Health (P41 EB002520—Tissue Engineering Resource Center), the National Science Foundation and the Air Force Office of Scientific Research.

Author information

Authors and Affiliations

Authors

Contributions

D.N.R., R.C.P., T.Y., X.W. and M.L.L. wrote the manuscript and D.L.K. supervised and edited the project.

Corresponding author

Correspondence to David L Kaplan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rockwood, D., Preda, R., Yücel, T. et al. Materials fabrication from Bombyx mori silk fibroin. Nat Protoc 6, 1612–1631 (2011). https://doi.org/10.1038/nprot.2011.379

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.379

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research