Original article
Defining the normal core microbiome of conjunctival microbial communities

https://doi.org/10.1016/j.cmi.2016.04.008Get rights and content
Under an Elsevier user license
open archive

Abstract

Bacterial ocular infections are common. Traditional culture and molecular biological methods have obvious limitations to identify the conjunctival microbiota, while metagenomic studies can avoid the defects of these methods. We used the Illumina high-throughput sequencing technology (MiSeq Illumina Sequencing Platform) to sequence the 16S rDNA V3–V4 hypervariable region of all bacteria in conjunctival swab samples. The operational taxonomic units were obtained from the sequences. The bioinformatic analyses of taxonomy, abundance and alpha diversity were performed. A total of 840 373 high-quality sequencing reads were generated from 31 conjunctival samples. The number of the species operational taxonomic units ranged from 159 to 2042, indicating high microbial diversity. The combined bacterial community was classified into 25 phyla and 526 distinct genera. At the genus level, Corynebacterium (28.22%), Pseudomonas (26.75%), Staphylococcus (5.28%), Acinetobacter (4.74%), Streptococcus (2.85%), Millisia (2.16%), Anaerococcus (1.86%), Finegoldia (1.68%), Simonsiella (1.48%) and Veillonella (1.00%) accounted for over 76% of the microbial community, possibly representing the core genera in normal conjunctival microbiota. The composition and diversity of microbiota in the normal adult human conjunctiva were characterized using high-throughput sequencing. A framework for investigating potential roles played by the diverse microbiota in disease related with the ocular surface was provided.

Keywords

16S rDNA
Adult
Conjunctival microbiota
High-throughput sequencing
Metagenomics

Cited by (0)

4

The first two authors contributed equally to this article, and both should be considered first author.