Skip to main content

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Log in

Functional protective effects of long-term memantine treatment in the DBA/2J mouse

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose

To analyse the effects of long-term memantine treatment on the retinal physiology and morphology of DBA/2J mice.

Methods

DBA/2J (D2J) mice received i.p. injections of the NMDA receptor antagonist memantine, which protects neurons from abnormally elevated glutamate levels, twice a day over a period of 7 months. At the age of 2, 6 and 10 months, the intraocular pressure (IOP) and electroretinograms (ERGs) were measured in all treated D2J mice, in untreated D2J controls and in C57Bl/6 (B6) wild-type mice. After the last measurement at the age of 10 months, the mice were killed and the retinae and the optic nerves were analysed morphologically.

Results

The IOP increased with age in both D2J and B6 mice with a larger increase in the D2J strain. IOPs were not influenced by memantine treatment. The response amplitude of the scotopic flash ERG decreased with age in the D2J strain. This amplitude decrease, particularly that of the b-wave, was smaller in treated D2J mice. The retinae of treated D2J mice exhibited less peripheral degeneration of cone photoreceptors, and optic nerve neuropathy was less frequent.

Conlcusions

Application of the NMDA receptor antagonist memantine diminished retinal neurodegeneration in the D2J mice and had a protective effect on the b-wave amplitude of the scotopic flash ERG. This protection may occur secondarily as memantine primarily acts on retinal ganglion cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anderson MG, Smith RS, Hawes NL, Zabaleta A, Chang B, Wiggs JL, John SWM (2002) Mutations in genes encoding melanosomal proteins cause pigmentary glaucoma in DBA/2J mice. Nat Genet 30(1):81–85

    Article  PubMed  CAS  Google Scholar 

  2. John SWM, Smith RS, Savinova OV, Hawes NL, Chang B, Turnbull M, Roderick TH, Heckenlively JR (1998) Essential iris atrophy, pigment dispersion, and glaucoma in DBA/2J mice. Invest Ophthalmol Vis Sci 39(6):951–962

    PubMed  CAS  Google Scholar 

  3. Chang B, Smith RS, Hawes NL, Anderson MG, Zabaleta A, Savinova O, Roderick TH, Heckenlively JR, Davisson MT, John SW (1999) Interacting loci cause severe iris atrophy and glaucoma in DBA/2J mice. Nat Genet 21(4):405–409. doi:10.1038/7741

    Article  PubMed  CAS  Google Scholar 

  4. Libby RT, Anderson MG, Pang IH, Robinson ZH, Savinova OV, Cosma IM, Snow A, Wilson LA, Smith RS, Clark AF, John SWM (2005) Inherited glaucoma in DBA/2J mice: pertinent disease features for studying the neurodegeneration. Vis Neurosci 22(5):637–648

    Article  PubMed  Google Scholar 

  5. Saleh M, Nagaraju M, Porciatti V (2007) Longitudinal evaluation of retinal ganglion cell function and IOP in the DBA/2J mouse model of glaucoma. Invest Ophthalmol Vis Sci 48(10):4564–4572

    Article  PubMed  Google Scholar 

  6. Scholz M, Buder T, Seeber S, Adamek E, Becker CM, Lütjen-Drecoll E (2008) Dependency of intraocular pressure elevation and glaucomatous changes in DBA/2J and DBA/2J-Rj mice. Invest Ophthalmol Vis Sci 49(2):613–621

    Article  PubMed  Google Scholar 

  7. Moon JI, Kim IB, Gwon JS, Park MH, Kang TH, Lim EJ, Choi KR, Chun MH (2005) Changes in retinal populations in the DBA/2J mouse. Cell Tissue Res 320(1):51–59

    Article  PubMed  CAS  Google Scholar 

  8. Schlamp CL, Li Y, Dietz JA, Janssen KT, Nickells RW (2006) Progressive ganglion cell loss and optic nerve degeneration in DBA/2J mice is variable and asymmetric. BMC Neurosci 7:66

    Article  PubMed  Google Scholar 

  9. Porciatti V, Saleh M, Nagaraju M (2007) The pattern electroretinogram as a tool to monitor progressive retinal ganglion cell dysfunction in the DBA/2J mouse model of glaucoma. Invest Ophthalmol Vis Sci 48(2):745–751

    Article  PubMed  Google Scholar 

  10. Harazny J, Scholz M, Buder T, Lausen B, Kremers J (2009) Electrophysiological deficits in the retina of the DBA/2J mouse. Doc Ophthalmol 119(3):181–197

    Article  PubMed  Google Scholar 

  11. Barabas P, Huang W, Chen H, Koehler CL, Howell G, John SW, Tian N, Renteria RC, Krizaj D (2011) Missing optomotor head-turning reflex in the DBA/2J mouse. Invest Ophthalmol Vis Sci 52(9):6766–6773. doi:10.1167/iovs.10-7147

    Article  PubMed  Google Scholar 

  12. Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1(8):623–634

    Article  PubMed  CAS  Google Scholar 

  13. Meldrum B, Garthwaite J (1990) Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol Sci 11(9):379–387

    Article  PubMed  CAS  Google Scholar 

  14. Lipton SA, Rosenberg RA (1994) Mechanisms of disease: excitatory amino acids as a final common pathway in neurologic disorders. N Engl J Med 330(9):613–622

    Article  PubMed  CAS  Google Scholar 

  15. Lucas DR, Newhouse JP (1957) The toxic effect of sodium L-glutamate on the inner layers of the retina. AMA Arch Ophthalmol 58(2):193–201

    Article  PubMed  CAS  Google Scholar 

  16. Olney JW (1969) Glutamate-induced retinal degeneration in neonatal mice. Electron microscopy of the acutely evolving lesion. J Neuropathol Exp Neurol 28(3):455–474

    Article  PubMed  CAS  Google Scholar 

  17. Vorwerk CK, Lipton SA, Zurakowski D, Hyman BT, Sabel BA, Dreyer EB (1996) Chronic low-dose glutamate is toxic to retinal ganglion cells. Toxicity blocked by memantine. Invest Ophthalmol Vis Sci 37(8):1618–1624

    PubMed  CAS  Google Scholar 

  18. Hare WA, Wheeler L (2009) Experimental glutamatergic excitotoxicity in rabbit retinal ganglion cells: block by memantine. Invest Ophthalmol Vis Sci 50(6):2940–2948

    Article  PubMed  Google Scholar 

  19. Clapham DE (1995) Calcium signaling. Cell 80(2):259–268

    Article  PubMed  CAS  Google Scholar 

  20. Schanne FA, Kane AB, Young EE, Farber JL (1979) Calcium dependence of toxic cell death: a final common pathway. Science 206(4419):700–702

    Article  PubMed  CAS  Google Scholar 

  21. Trump BF, Berezesky IK (1995) Calcium-mediated cell injury and cell death. FASEB J 9(2):219–228

    PubMed  CAS  Google Scholar 

  22. Bormann J (1989) Memantine is a potent blocker of N-methyl-D-aspartate (NMDA) receptor channels. Eur J Pharmacol 166(3):591–592

    Article  PubMed  CAS  Google Scholar 

  23. Kornhuber J, Bormann J, Retz W, Hubers M, Riederer P (1989) Memantine displaces [3H]MK-801 at therapeutic concentrations in postmortem human frontal cortex. Eur J Pharmacol 166(3):589–590

    Article  PubMed  CAS  Google Scholar 

  24. Seif el Nasr M, Peruche B, Rossberg C, Mennel HD, Krieglstein J (1990) Neuroprotective effect of memantine demonstrated in vivo and in vitro. Eur J Pharmacol 185(1):19–24

    Article  PubMed  CAS  Google Scholar 

  25. Chen HS, Pellegrini JW, Aggarwal SK, Lei SZ, Warach S, Jensen FE, Lipton SA (1992) Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity. J Neurosci 12(11):4427–4436

    PubMed  CAS  Google Scholar 

  26. Lipton SA (1993) Prospects for clinically tolerated NMDA antagonists: open-channel blockers and alternative redox states of nitric oxide. Trends Neurosci 16(12):527–532

    Article  PubMed  CAS  Google Scholar 

  27. Schneider E, Fischer PA, Clemens R, Balzereit F, Fünfgeld EW, Haase HJ (1984) Effects of oral memantine administration on Parkinson symptoms. Results of a placebo-controlled multicenter study. Dtsch Med Wochenschr 109(25):987–990. doi:10.1055/s-2008-1069311

    Article  PubMed  CAS  Google Scholar 

  28. Greenamyre JT, O’Brien CF (1991) N-methyl-D-aspartate antagonists in the treatment of Parkinson’s disease. Arch Neurol 48(9):977–981

    Article  PubMed  CAS  Google Scholar 

  29. Orgogozo JM, Rigaud AS, Stoffler A, Mobius HJ, Forette F (2002) Efficacy and safety of memantine in patients with mild to moderate vascular dementia: a randomized, placebo-controlled trial (MMM 300). Stroke 33(7):1834–1839

    Article  PubMed  CAS  Google Scholar 

  30. Reisberg B, Doody R, Stoffler A, Schmitt F, Ferris S, Mobius HJ (2003) Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med 348(14):1333–1341. doi:10.1056/NEJMoa013128

    Article  PubMed  CAS  Google Scholar 

  31. Pellegrini JW, Lipton SA (1993) Delayed administration of memantine prevents N-methyl-D-aspartate receptor-mediated neurotoxicity. Ann Neurol 33(4):403–407. doi:10.1002/ana.410330414

    Article  PubMed  CAS  Google Scholar 

  32. Lagreze WA, Knorle R, Bach M, Feuerstein TJ (1998) Memantine is neuroprotective in a rat model of pressure-induced retinal ischemia. Invest Ophthalmol Vis Sci 39(6):1063–1066

    PubMed  CAS  Google Scholar 

  33. Schuettauf F, Quinto K, Naskar R, Zurakowski D (2002) Effects of anti-glaucoma medications on ganglion cell survival: the DBA/2J mouse model. Vision Res 42(20):2333–2337

    Article  PubMed  CAS  Google Scholar 

  34. Zhong L, Bradley J, Schubert W, Ahmed E, Adamis AP, Shima DT, Robinson GS, Ng YS (2007) Erythropoietin promotes survival of retinal ganglion cells in DBA/2J glaucoma mice. Invest Ophthalmol Vis Sci 48(3):1212–1218. doi:10.1167/iovs.06-0757

    Article  PubMed  Google Scholar 

  35. Ju WK, Kim KY, Angert M, Duong-Polk KX, Lindsey JD, Ellisman MH, Weinreb RN (2009) Memantine blocks mitochondrial OPA1 and cytochrome c release and subsequent apoptotic cell death in glaucomatous retina. Invest Ophthalmol Vis Sci 50(2):707–716. doi:10.1167/iovs.08-2499

    Article  PubMed  Google Scholar 

  36. Filippopoulos T, Matsubara A, Danias J, Huang W, Dobberfuhl A, Ren L, Mittag T, Miller JW, Grosskreutz CL (2006) Predictability and limitations of non-invasive murine tonometry: comparison of two devices. Exp Eye Res 83(1):194–201

    Article  PubMed  CAS  Google Scholar 

  37. Goldblum D, Kontiola AI, Mittag T, Chen B, Danias J (2002) Non-invasive determination of intraocular pressure in the rat eye. Comparison of an electronic tonometer (TonoPen), and a rebound (impact probe) tonometer. Graefes Arch Clin Exp Ophthalmol 240:942–946

    Article  PubMed  Google Scholar 

  38. Danias J, Kontiola AI, Filippopoulos T, Mittag T (2003) Method for the noninvasive measurement of intraocular pressure in mice. Invest Ophthalmol Vis Sci 44(3):1138–1141

    Article  PubMed  Google Scholar 

  39. Zhang K, Yao G, Gao Y, Hofeldt KJ, Lei B (2007) Frequency spectrum and amplitude analysis of dark- and light-adapted oscillatory potentials in albino mouse, rat and rabbit. Doc Ophthalmol 115(2):85–93

    Article  PubMed  Google Scholar 

  40. Birke MT, Neumann C, Birke K, Kremers J, Scholz M (2010) Changes of osteopontin in the aqueous humor of the DBA/2J glaucoma model correlated with optic nerve and RGC degenerations. Invest Ophthalmol Vis Sci 51(11):5759–5767. doi:10.1167/iovs.10-5558

    Article  PubMed  Google Scholar 

  41. Inman DM, Sappington RM, Horner PJ, Calkins DJ (2006) Quantitative correlation of optic nerve pathology with ocular pressure and corneal thickness in the DBA/2 mouse model of glaucoma. Invest Ophthalmol Vis Sci 47(3):986–996

    Article  PubMed  Google Scholar 

  42. Howell GR, Libby RT, Marchant JK, Wilson LA, Cosma IM, Smith RS, Anderson MG, John SW (2007) Absence of glaucoma in DBA/2J mice homozygous for wild-type versions of Gpnmb and Tyrp1. BMC Genet 8:45

    Article  PubMed  Google Scholar 

  43. Samuel MA, Zhang Y, Meister M, Sanes JR (2011) Age-related alterations in neurons of the mouse retina. J Neurosci 31(44):16033–16044. doi:10.1523/jneurosci.3580-11.2011

    Article  PubMed  CAS  Google Scholar 

  44. Stockton RA, Slaughter MM (1989) B-wave of the electroretinogram: a reflection of ON bipolar activity. J Gen Physiol 93(1):101–122

    Article  PubMed  CAS  Google Scholar 

  45. Hare WA, WoldeMussie E, Lai RK, Ton H, Ruiz G, Chun T, Wheeler L (2004) Efficacy and safety of memantine treatment for reduction of changes associated with experimental glaucoma in monkey I: functional measures. Invest Ophthalmol Vis Sci 45(8):2625–2639

    Article  PubMed  Google Scholar 

  46. Porciatti V (2007) The mouse pattern electroretinogram. Doc Ophthalmol 115(3):145–153. doi:10.1007/s10633-007-9059-8

    Article  PubMed  Google Scholar 

  47. Miura G, Wang MH, Ivers KM, Frishman LJ (2009) Retinal pathway origins of the pattern ERG of the mouse. Exp Eye Res 89(1):49–62. doi:10.1016/j.exer.2009.02.009

    Article  PubMed  CAS  Google Scholar 

  48. Nagaraju M, Saleh M, Porciatti V (2007) IOP-dependent retinal ganglion cell dysfunction in glaucomatous DBA/2J mice. Invest Ophthalmol Vis Sci 48(10):4573–4579

    Article  PubMed  Google Scholar 

  49. Danias J, Lee KC, Zamora MF, Chen B, Shen F, Filippopoulos T, Su Y, Goldblum D, Podos SM, Mittag T (2003) Quantitative analysis of retinal ganglion cell (RGC) loss in aging DBA/2NNia glaucomatous mice: comparison with RGC loss in aging C57BL/6 mice. Invest Ophthalmol Vis Sci 44:5151–5162

    Article  PubMed  Google Scholar 

  50. Jakobs TC, Libby RT, Ben Y, John SWM, Masland RH (2005) Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2J mice. J Cell Biol 171(2):313

    Article  PubMed  CAS  Google Scholar 

  51. Howell GR, Libby RT, Jakobs TC, Smith RS, Phalam FC, Barter JW, Barbay JM, Marchant JK, Nagaraju M, Porciatti V, Whitmore AV, Masland RH, John SWM (2007) Axons of retinal ganglion cells are insulted in the optic nerve early in DBA/2J glaucoma. J Cell Biol 179(7):1523–1537

    Article  PubMed  CAS  Google Scholar 

  52. Schuettauf F, Rejdak R, Walski M, Frontczak-Baniewicz M, Voelker M, Blatsios G, Shinoda K, Zagorski Z, Zrenner E, Grieb P (2004) Retinal neurodegeneration in the DBA/2J mouse-a model for ocular hypertension. Acta Neuropathol 107(4):352–358. doi:10.1007/s00401-003-0816-9

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by Novartis Institutes for BioMedical Research. JK is supported by the Excellence Program of the Hertie Foundation. MS is supported by the Johannes und Frieda Marohn Foundation, Erlangen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Scholz.

Additional information

Jenny Atorf, Michael Scholz contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atorf, J., Scholz, M., Garreis, F. et al. Functional protective effects of long-term memantine treatment in the DBA/2J mouse. Doc Ophthalmol 126, 221–232 (2013). https://doi.org/10.1007/s10633-013-9380-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-013-9380-3

Keywords

Navigation