Skip to main content

Advertisement

Log in

Differential changes in retina function with normal aging in humans

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

We evaluated the full field electroretinogram (ERG) to assess age-related changes in retina function in humans. ERG recordings were performed on healthy subjects with normal fundus appearance, lack of cataract and 20/20 acuity, aged 20–39 years (n = 27; mean age 25 ± 5, standard deviation), 40–59 years (n = 20; mean 53 ± 5), and 60–82 years (n = 18; mean 69 ± 5). Multiple ERG tests were applied, including light and dark-adapted stimulus-response function, dark adaptation and dynamic of recovery from a single bright flash under dark-adapted conditions. Changes in ERG properties were found in the oldest age group when compared with the two younger age groups. (1) The photopic hill effect was less pronounced. (2) Both photopic a-wave and b-wave amplitudes and implicit times were increased at high stimulus strengths. (3) Dark adaptation time was delayed for pure rod and L/M cone-driven responses, respectively. (4) Dark-adapted a-wave but not b-wave amplitudes were reduced, yielding higher B/A ratios. (5) Dark-adapted a- and b-waves implicit times were prolonged: there was a direct proportional correlation between minimal a-wave implicit times and age. (6) The dynamic of dark current recovery from a bright flash, under dark-adapted conditions, was transiently faster at intervals between 0.9 and 2 s. These results denote that aging of the healthy retina is accompanied by specific functional changes, which must be taken into account to optimally diagnose potential pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gunkel RD, Gouras P (1963) Changes in scotopic visibility thresholds with age. Arch Ophthalmol 69:4–9

    PubMed  CAS  Google Scholar 

  2. Jackson GR, Owsley C, McGwin G (1999) Aging and dark adaptation. Vision Res 39:3975–3982

    Article  PubMed  CAS  Google Scholar 

  3. Jackson GR, Owsley C (2000) Scotopic sensitivity during adulthood. Vision Res 40:2467–2473

    Article  PubMed  CAS  Google Scholar 

  4. McFarland RA, Domey RG, Warren AB, Ward DC (1960) Dark adaptation as a function of age: I. A statistical analysis. J Gerontol 15:267–279

    PubMed  Google Scholar 

  5. Steinmetz RL, Haimovici R, Jubb C, Fitzke FW, Bird AC (1993) Symptomatic abnormalities of dark adaptation in patients with age-related Bruch’s membrane change. Br J Ophthalmol 77:549–554

    Article  PubMed  CAS  Google Scholar 

  6. Curcio CA, Millican CL, Allen KA, Kalina RE (1993) Aging of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina. Invest Ophthalmol Vis Sci 34:3278–3296

    PubMed  CAS  Google Scholar 

  7. Curcio CA, Medeiros NE, Millican CL (1996) Photoreceptor loss in age related macular degeneration. Invest Ophthalmol Vis Sci 37:1236–1249

    PubMed  CAS  Google Scholar 

  8. Panda-Jonas S, Jonas JB, Jakobczyk-Zmija M (1995) Retinal photoreceptor density decreases with age. Ophthalmology 102:1853–1859

    PubMed  CAS  Google Scholar 

  9. Gartner S, Henkind P (1981) Aging and degeneration of the human macula. 1. Outer nuclear layer and photoreceptors. Br J Ophthalmol 65:23–28

    Article  PubMed  CAS  Google Scholar 

  10. Kilbride PE, Hutman LP, Fishman M, Read JS (1986) Foveal cone pigment density difference in the aging human eye. Vision Res 26:321–325

    Article  PubMed  CAS  Google Scholar 

  11. Newsome DA, Negreiro M (2009) Reproducible measurement of macular light flash recovery time using a novel device can indicate the presence and worsening of macular diseases. Curr Eye Res 34:162–170

    Article  PubMed  Google Scholar 

  12. Werner JS (1996) Visual problems of the retina during ageing: compensation mechanisms and colour constancy across the life span. Prog Retin Eye Res 15:621–645

    Article  Google Scholar 

  13. Birch DG, Anderson JL (1992) Standardized full-field electroretinography. Normal values and their variation with age. Arch Ophthalmol 110:1571–1576

    PubMed  CAS  Google Scholar 

  14. Karpe G, Rickenbach K, Thomasson S (1950) The clinical electroretinogram. I. The normal electroretinogram above fifty years of age. Acta Ophthalmol 28:301–305

    CAS  Google Scholar 

  15. Kergoat H, Kergoat MJ, Justino L (2001) Age-related changes in the flash electroretinogram and oscillatory potentials in individuals age 75 and older. J Am Geriatr Soc 49:1212–1217

    Article  PubMed  CAS  Google Scholar 

  16. Martin DA, Heckenlively JR (1982) The normal electroretinogram. Doc Ophthalmol Proc Ser 31:135–144

    Google Scholar 

  17. Peterson H (1968) The normal b-potential in the single flash clinical electroretinogram: a computer technique study of the influence of sex and age. Acta Ophthalmol 99:7–77

    Google Scholar 

  18. Wright CE, Williams DE, Drasdo N, Harding GFA (1985) The influence of age on the electroretinogram and visual evoked potential. Doc Ophthalmol 59:365–384

    Article  PubMed  CAS  Google Scholar 

  19. Zeidler I (1959) The clinical electroretinogram. IX. The normal electroretinogram. Value of the b-potential in different age groups and its differences in men and women. Acta Ophthalmol 37:294–301

    CAS  Google Scholar 

  20. Cideciyan AV, Jacobson SG (1996) An alternative phototransduction model for human rod and cone ERG a-waves: normal parameters and variation with age. Vision Res 36:2609–2621

    Article  PubMed  CAS  Google Scholar 

  21. Chiti Z, North RV, Mortlock KE, Drasdo N (2003) The S-cone electroretinogram: a comparison of techniques, normative data and age-related variation. Ophthalmic Physiol Opt 23:370–376

    Article  PubMed  Google Scholar 

  22. Nilsson J, Wright T, Westall CA (2008) Rod a-wave analysis using high intensity flashes adds information on rod system function in 25% of clinical ERG recordings. Vision Res 48:1920–1925

    Article  PubMed  Google Scholar 

  23. Weleber RG (1981) The effect of age on human cone and rod ganzfeld electroretinograms. Invest Ophthalmol Vis Sci 20:392–399

    PubMed  CAS  Google Scholar 

  24. Kessel L, Lundeman JH, Herbst K, Andersen TV, Larsen M (2010) Age-related changes in the transmission properties of the human lens and their relevance to circadian entrainment. J Cataract Refract Surg 36:308–312

    Article  PubMed  Google Scholar 

  25. Pokorny J, Smith VC, Lutze M (1987) Aging of the human lens. Appl Opt 26:1437–1440

    Article  PubMed  CAS  Google Scholar 

  26. Sample PA, Esterson FD, Weinreb RN, Boynton RM (1988) The aging lens: in vivo assessment of light absorption in 84 human eyes. Invest Ophthalmol Vis Sci 29:1306–1311

    PubMed  CAS  Google Scholar 

  27. Marmor MF, Fulton AB, Holder GE, Miyake Y, Brigell M, Bach M, International Society for Clinical Electrophysiology of Vision (2009) ISCEV standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol 118:69–77

    Article  PubMed  CAS  Google Scholar 

  28. McCulloch DL, Hamilton R (2010) Essentials of photometry for clinical electrophysiology of vision. Doc Ophthalmol 121:77–84

    Article  PubMed  Google Scholar 

  29. Hamilton R, Bees MA, Chaplin CA, McCulloch DL (2007) The luminance-response function of the human photopic electroretinogram: a mathematical model. Vision Res 47:2968–2972

    Article  PubMed  CAS  Google Scholar 

  30. Ueno S, Kondo M, Niwa Y, Terasaki H, Miyake Y (2004) Luminance dependence of neural components that underlies the primate photopic electroretinogram. Invest Ophthalmol Vis Sci 45:1033–1040

    Article  PubMed  Google Scholar 

  31. Wali N, Leguire LE (1992) The photopic hill: a new phenomenon of the light adapted electroretinogram. Doc Ophthalmol 80:335–342

    Article  PubMed  CAS  Google Scholar 

  32. Pepperberg DR, Birch DG, Hofmann KP, Hood DC (1996) Recovery kinetics of human rod phototransduction inferred from the two-branched alpha-wave saturation function. J Opt Soc Am 13:586–600

    Article  CAS  Google Scholar 

  33. Brown PK, Wald G (1964) Visual pigments in single rods and cones of the human retina. Direct measurements reveal mechanisms of human night and color vision. Science 144:45–52

    Article  PubMed  CAS  Google Scholar 

  34. Ethen CM, Feng X, Olsen TW, Ferrington DA (2005) Declines in arrestin and rhodopsin in the macula with progression of age-related macular degeneration. Invest Ophthalmol Vis Sci 46:769–775

    Article  PubMed  Google Scholar 

  35. Rufiange M, Rousseau S, Dembinska O, Lachapelle P (2002) Cone-dominated ERG luminance-response function: the photopic hill revisited. Doc Ophthalmol 104:231–248

    Article  PubMed  Google Scholar 

  36. Dornstauder B, Freund P, Gilmour G, Sauvé Y (2010) Wavelet analysis shows age-related changes in full field ERG oscillatory potentials in humans. Invest Ophthal Vis Sci E Abstract 1496

  37. Bush RA, Sieving PA (1994) A proximal retinal component in the primate photopic ERG a-wave. Invest Ophthalmol Vis Sci 35:635–645

    PubMed  CAS  Google Scholar 

  38. Suzuki S, Horiguchi M, Tanikawa A, Miyake Y, Kondo M (1998) Effect of age on short-wavelength sensitive cone electroretinogram and long- and middle-wavelength sensitive cone electroretinogram. Jpn J Ophthalmol 42:424–430

    Article  PubMed  CAS  Google Scholar 

  39. Eliasieh K, Liets LC, Chalupa LM (2007) Cellular reorganization in the human retina during normal aging. Invest Ophthalmol Vis Sci 48:2824–2830

    Article  PubMed  Google Scholar 

  40. Breton ME, Schueller AW, Lamb TD, Pugh EN Jr (1994) Analysis of ERG a-wave amplification and kinetics in terms of the G-protein cascade of phototransduction. Invest Ophthalmol Vis Sci 35:295–309

    PubMed  CAS  Google Scholar 

  41. Birch DG, Hood DC, Locke KG, Hoffman DR, Tzekov RT (2002) Quantitative electroretinogram measures of phototransduction in cone and rod photoreceptors: normal aging, progression with disease, and test-retest variability. Arch Ophthalmol 120:1045–1051

    PubMed  Google Scholar 

  42. Jackson GR, McGwin G Jr, Phillips JM, Klein R, Owsley C (2004) Impact of aging and age-related maculopathy on activation of the a-wave of the rod-mediated electroretinogram. Invest Ophthalmol Vis Sci 45:3271–3278

    Article  PubMed  Google Scholar 

  43. Gao H, Hollyfield JG (1992) Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 33:1–17

    PubMed  CAS  Google Scholar 

  44. Keunen JEE, van Norren D, van Meel GJ (1979) Density of foveal cone pigments at older age. Invest Ophthalmol Vis Sci 28:985–991

    Google Scholar 

  45. Elsner AE, Berk L, Burns SA, Rosenberg PR (1988) Aging and human cone photopigments. J Opt Soc Am 5:2106–2112

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Grants: Alberta Heritage Foundation for Medical Research (AHFMR), the Canadian National Institute for the Blind, the Olive Young Foundation, the Lena McLaughlin Foundation (Mona & Rod McLennan), and the Alberta Centre on Ageing (ACA). PF was a recipient of an AHFMR summer studentship for 2009. JW was a recipient of an ACA studentship for 2008. FG was funded by an ISCEV visiting scientist grant (2008). YS is an AHFMR Senior Scholar. The authors would like to thank Ms Sharee Kuny for her invaluable assistance in editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Sauvé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freund, P.R., Watson, J., Gilmour, G.S. et al. Differential changes in retina function with normal aging in humans. Doc Ophthalmol 122, 177–190 (2011). https://doi.org/10.1007/s10633-011-9273-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-011-9273-2

Keywords

Navigation