Skip to main content

Advertisement

Log in

Anomalous posterior vitreous detachment: a unifying concept in vitreo-retinal disease

  • Review
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Posterior vitreous detachment (PVD) is the consequence of changes in the macromolecular structure of gel vitreous that result in liquefaction, concurrent with alterations in the extracellular matrix at the vitreo-retinal interface that allow the posterior vitreous cortex to detach from the internal limiting lamina of the retina. Gel liquefaction that exceeds the degree of vitreo-retinal dehiscence results in anomalous PVD (APVD). APVD varies in its clinical manifestations depending upon where in the fundus vitreo-retinal adhesion is strongest. At the periphery, APVD results in retinal tears and detachments. In the macula, APVD causes vitreo-macular traction syndrome, results in vitreoschisis with macular pucker or macular holes, or contributes to some cases of diabetic macular edema. At the optic disc and retina, APVD causes vitreo-papillary traction and promotes retinal and optic disc neovascularization. Unifying the spectrum of vitreo-retinal diseases into the conceptual framework of APVD underscores that to more effectively treat, and ultimately prevent, these disorders it is necessary to replicate the two components of an innocuous PVD, i.e., gel liquefaction and vitreo-retinal dehiscence. Pharmacologic vitreolysis is designed to mitigate against APVD by chemically breaking down vitreous macromolecules and weakening vitreo-retinal adhesion to safely detach the posterior vitreous cortex. This would not only facilitate surgery, but if performed early in the natural history of disease, it should prevent progressive disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Balazs EA (1961) Molecular morphology of the vitreous body. In: Smelser GK (ed) The structure of the eye. Academic, New York, pp 293–310

    Google Scholar 

  2. Balazs EA, Denlinger JL (1982) Aging changes in the vitreus. Aging and human visual function. Liss, New York, pp 45–57

    Google Scholar 

  3. Bishop PN (1996) The biochemical structure of mammalian vitreous. Eye 10:664–670

    PubMed  Google Scholar 

  4. Bishop PN (2000) Structural macromolecules and supramolecular organisation of the vitreous gel. Prog Retin Eye Res 19:323–344

    Article  CAS  PubMed  Google Scholar 

  5. Bishop PN, McLeod D, Reardon A (1999) Effects of hyaluronan lyase, hyaluronidase, and chondroitin ABC lyase on mammalian vitreous gel. Invest Ophthalmol Vis Sci 40:2173–2178

    CAS  PubMed  Google Scholar 

  6. Chow DR, Williams GA, Trese MT, Margherio RR, Ruby AJ, Ferrone PJ (1999) Successful closure of traumatic macular holes. Retina 19:405–409

    Article  CAS  PubMed  Google Scholar 

  7. Chu T, Lopez PF, Cano MR et al (1996) Posterior vitreoschisis—an echographic finding in proliferative diabetic retinopathy. Ophthalmology 103:315–322

    CAS  PubMed  Google Scholar 

  8. Comper WD, Laurent TC (1978) Physiological functions of connective tissue polysaccharides. Physiol Rev 58:255

    CAS  PubMed  Google Scholar 

  9. Foulds WS (1987) Is your vitreous really necessary? The role of the vitreous in the eye with particular reference to retinal attachment, detachment and the mode of action of vitreous substitutes (the 2nd Duke-Elder Lecture). Eye 1:641–664

    PubMed  Google Scholar 

  10. Hageman GS, Johnson LV (1984) Lectin-binding glycoproteins in the vertebrate vitreous body and inner limiting membrane—tissue localization and biochemical characterization. J Cell Biol 99:179a

    Google Scholar 

  11. Hageman GS, Russell SR (1994) Chondroitinase-mediated disinsertion of the primate vitreous body. Invest Ophthalmol Vis Sci 35(ARVO):1260

    Google Scholar 

  12. Hesse L, Nebeling B, Schroeder B, Heller G, Kroll P (2000) Induction of posterior vitreous detachment in rabbits by intravitreal injection of tissue plasminogen activator following cryopexy. Exp Eye Res 70:31–39

    Article  CAS  PubMed  Google Scholar 

  13. Hikichi T, Masanori K, Yoshida A (1999) Posterior vitreous detachment induced by injection of plasmin and sulfur hexafluoride in the rabbit vitreous. Retina 19:55–58

    CAS  PubMed  Google Scholar 

  14. Hikichi T, Masanori K, Yoshida A (2000) Intravitreal injection of hyaluronidase cannot induce posterior vitreous detachment in the rabbit. Retina 20:195–198

    Article  CAS  PubMed  Google Scholar 

  15. Jorge R, Oyamaguchi EK, Cardillo JA, Gobbi A, Laicine EM, Haddad A (2003) Intravitreal injection of dispase causes retinal hemorrhages in rabbit and human eyes. Curr Eye Res 26:107–112

    Article  PubMed  Google Scholar 

  16. Kakehashi A, Schepens CL, de Sousa-Neto A, Jalkh AE, Trempe CL (1993) Biomicroscopic findings of posterior vitreoschisis. Ophthalmic Surg 24:846–850

    CAS  PubMed  Google Scholar 

  17. Kobayashi S, Fujikawa S, Ohmae M (2000) Enzymatic synthesis of chondroitin and its derivatives catalyzed by hyaluronidase. J Am Chem Soc 125:14357–14369

    Article  Google Scholar 

  18. Maumenee IH (1979) Vitreoretinal degenerations as a sign of generalized connective tissue diseases. Am J Ophthalmol 88:432–449

    CAS  PubMed  Google Scholar 

  19. Mayne R (2001) The eye. Connective tissue and its heritable disorders. Wiley-Liss, New York, pp 131–141

    Google Scholar 

  20. Mayne R, Brewton RG, Ren Z-H (1997) Vitreous body and zonular apparatus. In: Harding JJ (ed) Biochemistry of the eye. Chapman & Hall, London, pp 135–143

    Google Scholar 

  21. Oliviera LB, Tatebayashi M, Mahmoud TH et al (2001) Dispase facilitates posterior vitreous detachment during vitrectomy in young pigs. Retina 21:324–331

    Article  PubMed  Google Scholar 

  22. Russell SR, Shepherd JD, Hageman GS (1991) Distribution of glycoconjugates in the human internal limiting membrane. Invest Ophthalmol Vis Sci 32:1986–1995

    CAS  PubMed  Google Scholar 

  23. Scott JE (1992) The chemical morphology of the vitreous. Eye 6:553–555

    PubMed  Google Scholar 

  24. Scott JE, Chen Y, Brass A (1992) Secondary and tertiary structures involving chondroitin and chondroitin sulphate in solution, investigated by rotary shadowing electron microscopy and computer simulation. Eur J Biochem 209:675–680

    CAS  PubMed  Google Scholar 

  25. Sebag J (1987) Ageing of the vitreous. Eye 1:254–262

    PubMed  Google Scholar 

  26. Sebag J (1987) Age-related changes in human vitreous structure. Graefes Arch Clin Exp Ophthalmol 225:89

    CAS  PubMed  Google Scholar 

  27. Sebag J (1989) The vitreous: structure, function and pathobiology. Springer, New York Berlin Heidelberg

    Google Scholar 

  28. Sebag J (1991) Age-related differences in the human vitreo-retinal interface. Arch Ophthalmol 109:966–971

    CAS  PubMed  Google Scholar 

  29. Sebag J (1992) Anatomy and pathology of the vitreo-retinal interface. Eye 6:541–552

    PubMed  Google Scholar 

  30. Sebag J (1993) Abnormalities of human vitreous structure in diabetes. Graefes Arch Clin Exp Ophthalmol 231:257–260

    CAS  PubMed  Google Scholar 

  31. Sebag J (1996) Diabetic vitreopathy. Ophthalmology 103:205–206

    CAS  PubMed  Google Scholar 

  32. Sebag J (1997) Guest editorial: classifying posterior vitreous detachment—a new way to look at the invisible. Br J Ophthalmol 81:521–522

    CAS  PubMed  Google Scholar 

  33. Sebag J (1998) Macromolecular structure of vitreous. Prog Polym Sci 23:415–446

    Article  CAS  Google Scholar 

  34. Sebag J (1998) Pharmacologic vitreolysis. Retina 18:1–3

    CAS  PubMed  Google Scholar 

  35. Sebag J (1998) Vitreous—from biochemistry to clinical relevance. In: Tasman W, Jaeger EA (eds) Duane’s foundations of clinical ophthalmology, vol 1. Lippincott Williams & Wilkins, Philadelphia (Chapter 16)

    Chapter  CAS  Google Scholar 

  36. Sebag J (2002) Is pharmacologic vitreolysis brewing? Retina 22:1–3

    CAS  PubMed  Google Scholar 

  37. Sebag J (2004) Seeing the invisible—the challenge of imaging vitreous. J Biomed Opt 9:38–46

    Article  CAS  PubMed  Google Scholar 

  38. Sebag J, Balazs EA (1989) Morphology and ultrastructure of human vitreous fibers. Invest Ophthalmol Vis Sci 30:1867–1871

    CAS  PubMed  Google Scholar 

  39. Sebag J, Hageman GS (2000) Interfaces. Eur J Ophthalmol 10:1–3

    CAS  PubMed  Google Scholar 

  40. Sebag J, Buckingham B, Charles MA, Reiser K (1992) Biochemical abnormalities in vitreous of humans with proliferative diabetic retinopathy. Arch Ophthalmol 110:1472–1479

    CAS  PubMed  Google Scholar 

  41. Sebag J, Nie S, Reiser KA, Charles MA, Yu NT (1994) Raman spectroscopy of human vitreous in proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 35:2976–2980

    CAS  PubMed  Google Scholar 

  42. Sebag J, Ansari RR, Dunker S, Suh SI (1999) Dynamic light scattering of diabetic vitreopathy. Diabetes Technol Ther 1:169–176

    Article  CAS  PubMed  Google Scholar 

  43. Sheehan JK, Atkins EDT, Nieduszynski IA (1975) X-ray diffraction studies on the connective tissue polysaccharides. Two dimensional packing scheme for threefold hyaluronic chains. J Mol Biol 91:153–163

    CAS  PubMed  Google Scholar 

  44. Snead MP, Yates JRW (1999) Clinical and molecular genetics of Stickler syndrome. J Med Genet 36:353

    CAS  PubMed  Google Scholar 

  45. Tezel TH, Del Priore LV, Kaplan HJ (1998) Posterior vitreous detachment with dispase. Retina 18:7–15

    CAS  PubMed  Google Scholar 

  46. Trese MT, Williams GA, Hartzer MK (2000) A new approach to stage 3 macular holes. Ophthalmology 107:1607–1611

    Article  CAS  PubMed  Google Scholar 

  47. Unal M, Peyman GA (2000) The efficacy of plasminogen–urokinase combination in inducing posterior vitreous detachment. Retina 20:69–75

    Article  CAS  PubMed  Google Scholar 

  48. Valmaggia C, Willekens B, de Smet M (2003) Microplasmin induced vitreolysis in porcine eyes. Invest Ophthalmol Vis Sci 44(ARVO):3050

    Article  Google Scholar 

  49. Verstraeten T, Chapman C, Hartzer M, Winkler BS, Trese MT, Williams GA (1993) Pharmacologic induction of PVD in the rabbit. Arch Ophthalmol 111:849

    CAS  PubMed  Google Scholar 

  50. Williams JG, Trese MT, Williams GA, Hartzer MK (2001) Autologous plasmin enzyme in the surgical management of diabetic retinopathy. Ophthalmology 108:1902–1905

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sebag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sebag, J. Anomalous posterior vitreous detachment: a unifying concept in vitreo-retinal disease. Graefe's Arch Clin Exp Ophthalmol 242, 690–698 (2004). https://doi.org/10.1007/s00417-004-0980-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-004-0980-1

Keywords

Navigation