Skip to main content
Log in

The care and fitting of Naka-Rushton functions to electroretinographic intensity-response data

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

We developed an automated system to estimate parameters of the Naka-Rushton function based on a heuristic model of the electroretinogram intensity-response series. Data from a population of patients with central retinal vein occlusion were used to examine the ability of the derived parameters to predict the development of neovascularization of the iris. The predictive performance of this automated system in central retinal vein occlusion is comparable to that of a human expert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CRVO:

central retinal vein occlusion

NVI:

neovascularization of the iris

ROC:

relative operating characteristic

RP:

retinitis pigmentosa

References

  1. Dewar J, M'Kendrick JG. On the physiological action of light. Proc R Soc Edin 1873; 8: 110–4.

    Google Scholar 

  2. Naka KI, Rushton WAH. S-potentials from colour units in the retina of fish (Cyprinidae). J Physiol 1966; 185: 536–55.

    PubMed  Google Scholar 

  3. Fulton AB, Rushton WAH. The human rod ERG: Correlation with psychophysical responses in light and dark adaptation. Vision Res 1978; 18: 793–800.

    PubMed  Google Scholar 

  4. Arden GB, Carter RM, Hogg CR, Powell DJ, Ernst WJK, Clover GM, Lyness AL, Quinlan MP. A modified ERG technique and the results obtained in X-linked retinitis pigmentosa. Br J Ophthalmol 1983; 67: 419–30.

    PubMed  Google Scholar 

  5. Massof RW, Wu L, Finkelstein D, Perry C, Starr SJ, Johnson MA. Properties of electroretinographic intensity-response functions in retinitis pigmentosa. Doc Ophthalmol 1984; 57: 279–96.

    PubMed  Google Scholar 

  6. Johnson MA, Finkelstein D. The electroretinogram in retinal vein occlusion. Invest Ophthalmol Vis Sci 1985; 26(suppl.): 323.

    Google Scholar 

  7. Johnson MA, Marcus S, Elman MJ, McPhee TJ. Neovascularization in central retinal vein occlusion: Electroretinographic findings. Arch Ophthalmol 1988; 106: 348–52.

    PubMed  Google Scholar 

  8. Johnson MA, McPhee TJ. Electroretinographic findings in iris neovascularization due to acute central retinal vein occlusion. Arch Ophthalmol 1993; 111: 806–814.

    PubMed  Google Scholar 

  9. Breton ME, Quinn GE, Keene SS, Dahmen JC, Brucker AJ. Electroretinogram parameters at presentation as predictors of rubeosis in central retinal vein occlusion patients. Ophthalmology 1989; 96: 1343–52.

    PubMed  Google Scholar 

  10. Bresnick GH, Roecker E, Pulos E. ERG intensity response characteristics in diabetic retinopathy. Invest Ophthalmol Vis Sci 1988; 29(suppl.): 68.

    Google Scholar 

  11. Roecker EB, Pulos E, Bresnick GH, Severns M. Characterization of the electroretinographic scotopicb-wave amplitude in diabetic and normal subjects. Invest Ophthalmol Vis Sci 1992; 33: 1575–83.

    PubMed  Google Scholar 

  12. Peachey NS, Charles HC, Lee CL, Fishman GA, Cunha-Vaz JG, Smith TR. Electroretinographic findings in sickle cell retinopathy. Arch Ophthalmol 1987; 105: 934–8.

    PubMed  Google Scholar 

  13. Hood DC, Birch DG. The a-wave of the human electroretinogram and rod receptor function. Invest Ophthalmol Vis Sci 1990; 31: 2070–81.

    PubMed  Google Scholar 

  14. Breton ME, Montzka D. Empiric limits of rod photocurrent component underlying a-wave response in the electroretinogram. Doc Ophthalmol 1992; 79: 337–61.

    PubMed  Google Scholar 

  15. Hood DC, Birch DG. A quantitative measure of the electrical activity of human rod photoreceptors using electroretinography. Vis Neurosci 1990; 5: 379–87.

    PubMed  Google Scholar 

  16. Karpe G. The basis of clinical electroretinography. Acta Ophthalmol 1945; 24(suppl.): 1–118.

    Google Scholar 

  17. Goodman G, Bornschein H. Comparative electroretinographic studies in congenital night blindness and total color blindness. Arch Ophthalmol 1957; 58: 174–82.

    Google Scholar 

  18. Biersdorf WR. Luminance-duration relationships in the light-adapted electroretinogram. J Opt Soc Am 1958; 48: 412–7.

    PubMed  Google Scholar 

  19. Rendahl I. The scotopic a-wave of the human electroretinogram. Acta Ophthalmol 1958; 36: 329–43.

    Google Scholar 

  20. Peachey NS, Alexander KR, Fishman GA. The luminance-response function of the dark-adapted human electroretinogram. Vision Res 1981; 29: 263–70.

    Google Scholar 

  21. Marmor MF, Arden GB, Nilsson SEG, Zrenner E. Standard for clinical electroretinography. Arch Ophthalmol 1989; 107: 816–9; Reprinted with permission in Doc Ophthalmol 1989; 303–311.

    PubMed  Google Scholar 

  22. Severns ML, Johnson, MA. The variability of the b-wave of the electroretinogram. Doc Ophthalmol 1993 (in press).

  23. Clarkson JC. Central retinal vein occlusion. In Ryan SJ, ed. Retina. St. Louis: CV Mosby, 1989; 2: 421–6.

    Google Scholar 

  24. Press WH, Flannery BP, Teukolsky SA, Vetterling WT. Numerical recipes. Cambridge: Cambridge University Press, 1988: 305–9.

    Google Scholar 

  25. Hoaglin DC, Mosteller F, Tukey JW. Understanding robust and exploratory data analysis. New York: John Wiley & Sons, 1983.

    Google Scholar 

  26. Green DM, Swets JA. Signal detection theory and psychophysics. New York: Krieger, 1974: 45–9.

    Google Scholar 

  27. Bamber D. The area above the ordinal dominance graph and the area below the receiver operating characteristic graph. J Math Psychol 1957; 12: 387–415.

    Google Scholar 

  28. Hanley JA, McNeil BJ. The meaning and use of the area under the receiver operating characteristic (ROC) curve. Radiology 1982; 143: 29–36.

    PubMed  Google Scholar 

  29. Hanley JA, McNeil BJ. A method of comparing the area under two ROC curves derived from the same data. Radiology 1983; 148: 839–43.

    PubMed  Google Scholar 

  30. Aylward GW. A simple method of fitting the Naka-Rushton equation. Clin Vision Sci 1989; 4: 275–7.

    Google Scholar 

  31. Wali N, Leguire LE. On the method for fitting the Naka-Rushton equation: Corrections to Aylward. Clin Vision Sci 1990; 6: 79.

    Google Scholar 

  32. Hood DC, Birch DG. A computational model of the amplitude and implicit time of the b-wave of the human ERG. Vis Neurosci 1992; 8: 107–26.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Severns, M.L., Johnson, M.A. The care and fitting of Naka-Rushton functions to electroretinographic intensity-response data. Doc Ophthalmol 85, 135–150 (1993). https://doi.org/10.1007/BF01371129

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01371129

Key words

Navigation