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1 Supplementary material 1: statical analysis
2

3 Inthis work, we use a statistical model for spatial data to make a prediction about what would have happened
4 in the year 2020 on the incidence of the disease, this is done since the results are greatly affected by the
5 pandemic. The statistical models for spatial data are divided by Cressie [1] into two broad classes:
6  geostatistical models with continuous spatial support and models in a lattice, also called area models [2], where
7  the data occur in a (possibly irregular) grid, with an enumerable set of vertices or locations . The two most
8  common area models are conditional autoregressive (CAR) models and simultaneous autoregressive (SAR)
9  models. These autoregressive models are used in many fields, including mapping disease rates [3], agriculture
10  [4], econometrics [5], ecology [6] and image analysis [7]. In this paper we will focus on CAR models. CAR
11  models are an example of the Gaussian Markov random fields [8] and the popular nested Laplace approach
12 integrated methods [9].
13
14 The basis of these models is the Gaussian Markov Fields. Random fields are multivariate distributions that are
15  generally used to describe the spatial association between variables X. A Markov random field extends the
16  Markov chain concept to a spatial context and assumes that such a joint distribution of X satisfies:

FXG X ) = F(Xi| X i),
17

18  where, X j~i is the vector formed by all the components of X that are neighbors of i. A Gaussian Random
19  Markov Field (GMRF) is a Markov field where the random vector distribution (finite-dimensional) is a normal
20  or Gaussian distribution satisfying the conditional independence assumptions.

21

22 Ann-dimensional random vector Yu«i = (Y1,¥2,...,yn)  , n <o has a n—variable distribution with mean vector paxi
23 and covariance matrix X,-n, and its probability density function (fdp) assumes the as follows:

24

N Fuly) = m) PSP el (y — )5 (y — @)}

26

27 This distribution will be denoted by ¥ ~ NV (1,%) where u and X only have:
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29 wi = E(y:)
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Yi; = Cov(yi, y;), S = Var(y;) and Corr(yi, y;) = Sij(2uX;;) Y2

and

To build a GMRF we consider a graph G = (V, E) with n vertices where each vertex represents one of the

components of the vector y = (y1,y2....,yn) and edges connect nodes that have some sort of association. A GMRF

Yy = (ylﬂy%"'ayn)T ~ N(IJ')E)

assumes that and that the edges of the graph connect nodes i and j if
and only if y;Lyj|y-i, that is, if y; is independent of yj, given the components of y except yiand y;. In a GMRF,

the covariance matrix brings information about the connections between the nodes through the precision matrix

¥ '= Q which is a symmetric matrix and positive definite.

So, a random vector y = (y1,y2.....yn)' € R"is called GMRF corresponding to a graph G = (V,E) with mean p

and precision matrix Q > 0, if and only if the pdf of y has the following form:

m(y) = (2m)"*1Q|"* exp (—%(y —1)'Qy — u))

B

where the array Q satisfies the following condition:

If Q is a completely dense matrix, then G is fully connected, that is, the vertex is connected to all other vertices
in the graph. Let’s focus on the case where Q is sparse. All results valid for the normal distribution will also

be valid for a GMRF. A detailed discussion of GMRF can be found in Rue and Held [8].

An example of a GMREF is the conditional autoregressive model or CAR model, in this case we consider a

geographic region that is partitioned into n subregions indexed by integers 1,2,...,n and assume that this
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53  collection of sub-regions has a neighborhood system {V;:i 1,...n}, where V;denotes the collection of sub-
54  regions that, in a well-defined sense, are neighbors of the subregion i. In geographical terms,

55
56 Vi={j : the subregions i and j share a boundary}, to i € {1,2,....n},
57
58  The neighborhood system is a key point in autoregressive or CAR models that are commonly used in spatial
59  statistics, the graphs that support the construction of the GMRF will be those that express these neighborhood
60  structures. In this context, the edges E in the graph G = (V, E), represent the connections in the geographic
61  structure and, consequently, define the neighbors that are used to model spatial dependence. The components
62  of the vector y are nodes of the graph.
63
64  Letyi,...,ya be the observations made in the areas 1,...,n. Let us denote by j ~ i that node j is a neighbor of node
65  i. The term conditional, in the CAR model is used because each element of the random process is conditionally
66  specified in the values of neighboring nodes, the CAR model assumes that the complete conditional
67  distributions are normal distributions. Then, we assuming that,
68
2

Yily—i ~ N(pi + pg(y — )i, %)
69 i,
70
71  where 7/ df is the conditional variance of yily_i, P9 is a proportionality constant, d? is the number of
72 neighbors of node i in the graph G, the average of the neighbors of node i is the:
23 (y— 1) = Cea(d?) (Y5 — 1)
74  and,

€9 ={(i,j) € E(G) : j ~ i}
75
76 s the set of edges that belong to the graph G. Consider the adjacency matrix Ag = (ai5) such that a;i=0,a=1
77 ifiandja;=0ifi6=~jand Mg = diag{d{,d5,...,d5},
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78
_ -1
79  Besag uses Brook’s lemma [2, 10] and shows that when the matrix(Mg paAg) is positive definite and
80  symmetric the joint distribution for y is:
g -1
Yy~ N(IJ” (ZCAR) )7
81
82
g -1 _ 52 _ -1
83  where (Bear) ™ = 7 (Mg — pgAg) . For the covariance matrix to be positive definite, it
1 —1/2 —1/2
84  is necessary that PG < 3! where L is the smallest eigenvalue of the matrix Mg AQM’Q Banerjee et al
85 [2]
86
87  Inconclusion, the CAR model approach visualizes the geographic domain as an undirected graph with a vertex
88  in each region and an edge between two vertices if the corresponding regions share a geographic edge. This
89  creates well-defined neighbors for each region, which are used to define the joint or conditional distribution.
90  The distribution will be the multivariate normal distribution. All analysis of the CAR model is concentrated
91  on the covariance matrix X, which is defined by the graph of the geographic domain and the parameter p.
92
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