The central corneal thickness amounted 575±52 μm with Pentacam, and 597±80 μm [p=0.20] with sterile donor tomography.

Conclusion The front and back surface astigmatism as well as the central corneal thickness remained statistically unchanged after corneal excision and preservation in organ culture in comparison to measurement of the donor prior death. The statistically non-similar anterior and posterior radius of curvature between both methods must be seen in light of the known differing corneal topography between swept-source anterior segment optical coherence tomography and Scheimpflug imaging. These results suggest a merely minimal deformation caused by the storage and attachment of donor corneas to their holder in the cell culture flask for sterile donor tomography, causing a steeper anterior surface curvature but leaving the astigmatism still congruent with previous in situ conditions.

Purpose To analyse the microbiologic control results taken during the processing of hypothermic and cultured corneas for endothelial transplants comparing the two groups from January to September 2022.

METHODS The microbiological controls of hypothermic corneas prepared for DSAEK or DMEK are: Transport Eusol control (pre-manipulation) and new Eusol control (post-manipulation). In cultured corneas the number of controls is increased to 4: first culture medium, evaluation culture medium, transport medium 24 hours post-evaluation and transport medium post-manipulation.

RESULTS A total of 1438 corneas were processed for transplant during the 9 months studied (321 fresh corneas and 1113 cultured corneas). A total of 557 corneas were prepared for DSAEK or DMEK, from which 89 (15.98%) were hypothermic corneas and 468 (84.02%) were cultured. From hypothermic corneas, 65 were cut for DSAEK and with 24 corneas, pre-stripping for DMEK was done. In the case of cultured corneas, 187 were cut for DSAEK and with 281 pre-stripping for DMEK was done. The number of corneas with positive results in the microbiological controls were 15 (16.85%) in the case of fresh corneas (in 7 corneas that were prepared for DSAEK and in 8 for DMEK) and 4 cases (0.85%) in cultured corneas (in 3 corneas for DSAEK and in 1 cornea for DMEK) resulting in a clear difference between both preservation methods. Bio-surveillance notifications notified during the studied period have been a total of 5, from which 2 were SAE in hypothermic corneas and other 2 were SAE and 1 SAR, in cultured corneas, all for endothelial transplantations.

Abstracts

COMPARISON OF STERILE DONOR TOMOGRAPHY IN THE EYE BANK AND PREVIOUS KERATOMETRIC MEASUREMENTS DURING THE DONOR’S LIFETIME

Purpose Sterile donor tomography in the eye bank can be used to minimise refractive surprises after corneal transplantation.

The aim of this study was to compare sterile tomography of donor corneas in the eye bank with keratometric measurements of the same donors performed prior their death.

Methods Since 2018, 1246 donor sclerocorneal discs have been routinely measured using donor tomography, taken steriley through their cell culture flask in medium II using the anterior segment optical coherence tomograph Casia 2 (Tomey Corp., Nagoya, Japan) and a custom-made Matlab software (The MathWorks Inc., Natick, Massachusetts, USA). Of all these donor corneas, 19 (1.5%) appeared to have been measured with Pentacam (Oculus Optikgeräte GmbH, Wetzlar, Germany) in the donors before death. Both measurements, taken at a mean interval of 35 ± 26 months, were compared using a Wilcoxon signed-rank test.

Results The mean steepest/flattest front surface radius and anterior astigmatism of the corneas measured with Pentacam amounted 7.66±0.35/7.93±0.37 mm, and 0.27±0.43 mm. Corresponding values of sterile donor tomography were respectively 7.48±0.31 [p<0.01]/7.77±0.25 [p=0.01] mm, and 0.29±0.35 [p=0.78] mm.

At the posterior corneal surface, the Pentacam measured a mean steepest/flattest surface radius and astigmatism of 6.27 ±0.33/6.72±0.48 mm and 0.45±0.47 mm, whereas values of sterile donor tomography amounted 6.55±0.30 [p<0.01]/6.94 ±0.33 [p=0.04] mm and 0.39±0.26 [p=0.63] mm, respectively.

MICROBIOLOGY IN ENDOTHELIAL GRAFTS

P09-A130 MANAGEMENT OF AN EYE BANK WITH ORGAN-CULTURED AND HYPOTERMIC CORNEAS: MICROBIOLOGY IN ENDOTHELIAL GRAFTS

1Nausica Otero Aretio, 1Eva Maria Martínez-Conesa, 1Egbas Agustí Rovira, 1Natxaret Pujagut Mercader, 1Óscar Farfías Barbera, 4Noelia Sabater-Cruz, 1Anna Vilarrubona Serrat, 1Barcelona Tissue Bank, Banc de Sang i Teixits (BST) Barcelona, Spain; 2Vall Hebron Institute of Research (VHIR), Barcelona, Spain; 3Biomedical Research Institute IIB-Sant Pau; 4Hospital Clinic, Barcelona, Spain

Purpose To analyse the microbiologic control results taken during the processing of hypothermic and cultured corneas for endothelial transplants comparing the two groups from January to September 2022.