Abstracts

Conclusion The usefulness of AI for annotating corneal OCT lesions depends on the homogeneity and quality of the image. OCT systems which provide higher resolution images enable better automated annotation.

OP-4 DEVELOPMENT OF NOVEL HUMAN-DERIVED HYBRID HOST DEFENSE PEPTIDES FOR INFECTIOUS KERATITIS

1Darren Shu Jing Ting*, 1Rajamani Lakshminarayanan, 1Imran Mohammed, 1Haminder Dua, 1Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, UK; 1Singapore Eye Research Institute, Singapore; 2Cardiff University, Cardiff, UK; 3University of Nottingham, Nottingham, UK

*Correspondence, Darren Shu Jing Ting: ting.darren@gmail.com

Background/Aim Infectious keratitis (IK) is a major cause of corneal blindness worldwide. This study aimed to develop potent human-derived hybrid host defense peptides (HyHDPs) with broad-spectrum antimicrobial activities for IK.

Methods HyHDPs were rationally designed through combination of human cathelicidin (LL-37) and human-beta-defensins (HBDs), and with guidance from molecular dynamics (MD) simulations. Efficacy of HyHDPs was determined against a range of bacteria, fungi and Acanthamoeba. Risk of antimicrobial resistance (AMR) was evaluated using multipassage AMR assay. Pre-clinical murine studies were performed to examine the in vivo efficacy and safety of HyHDPs in meticillin-resistant S. aureus (MRSA)-related keratitis.

Results Hybridisation of LL-37 and HBD-2 led to the development of HDP23, which demonstrated good efficacy against S. aureus and MRSA [minimum inhibitory concentration (MIC)=12.5–25.0 µg/ml], but not against fungi or Acanthamoeba. MD simulations provided atomistic insights into the key membrane-active residues and accelerated the discovery of HDP56. Compared to HDP23, HDP56 exhibited 4–32 times improved efficacy against S. aureus, MRSA, Pseudomonas aeruginosa, and Fusarium solani (MIC=3.1–6.3 µg/ml). At 100 µg/ml, HDP56 exhibited good anti-Acanthamoeba trophozoites efficacy (99.8%) and anti-encystation efficacy (80.9%). S. aureus did not develop any AMR against HDP56 after 15 treatment passages/days but developed significant AMR (32 times increase in MIC) against levofloxacin after 13 passages/days. Pre-clinical murine studies demonstrated strong efficacy and safety of HDP56 (0.5 mg/ml) in treating MRSA-related keratitis (93% reduction in bacteria, which was equally effective to levofloxacin (5 mg/ml).

Conclusion Rational hybridisation of HDPs, with guidance from MD simulations, has enabled the development of a novel HDP-based therapy for IK.

OP-5 MEASURING BOWMAN’S LAYER IN THE CLINIC

1Stephen Kaye*, 1Sam Lawman, 2Alexander Undan, 2Andrea Madden, 2Luca Pagano, 3Vito Romano, 1Sharon Mason, 1Yaochun Shen, 1Yalin Zheng, 1University of Liverpool, Liverpool, UK; 2Royal Liverpool University Hospital, Liverpool, UK

*Correspondence, Stephen Kaye: s.b.kaye@liverpool.ac.uk

Purpose To assess the accuracy, repeatability, and performance limits of in vivo Mirau ultrahigh axial resolution (UHR) line field spectral domain (LF-SD) optical coherence tomography (OCT) for the clinical in vivo measurement of Bowman’s layer thickness in subjects with and without keratoconus.

Methods Patients with keratoconus and volunteers with no corneal disease were included. The thickness of Bowman’s layer was measured in the clinic. An in vivo graph search image segmentation of the central cornea was obtained at the normal interface vector orientation. The Mirau-UHR-LF-SD-OCT system used has an axial resolution down to 2.4 µm in air (1.7 µm in tissue), with an A-scan speed of 204.8 kHz and a signal to noise ratio (sensitivity) of 69 (83) dB. Results 40 patients with keratoconus and 20 healthy volunteers were included. The mean thickness of Bowman’s and epithelial thicknesses were 0.3 and 1.0 µm, respectively. The measured 95% population range for Bowman’s layer thickness was 13.7 to 19.6 µm for healthy (mean 16.65, SD 1.48) and 10.94 to 16.99 for 23 of the keratoconics (mean 13.96 SD 1.51) (p<0.05).

Conclusions The measured thicknesses of Bowman’s layer using the Mirau-UHR-LF-SD-OCT were both accurate, with the range for healthy in vivo thicknesses matching prior confocal and OCT systems of varying axial resolutions and repeatable. Bowman’s layer was significantly thinner in patients with keratoconus. Bowman’s layer can be accurately measured in the clinical setting using a Mirau-UHR-LF-SD-OCT and can be useful for disease monitoring.

OP-6 SIMULATED LAMELLAR AND ENDOTHELIAL KERATOPLASTY USING THREE-DIMENSIONAL PRINTED AND THIN-FILM MODELS

Lana Fu*, Sophie M Jones, Emma J Hollick. King’s College Hospital, London, UK

*Correspondence, Lana Fu: L.Fu@nhs.net

Background Corneal transplantation techniques’ evolution has resulted in faster visual recovery, lower immunological rejection, and improved graft survival. However, the number of transplants that can be performed can be limited by a lack of donor corneas, a steep learning curve, and the need for specialised expertise.

Methods A literature search was undertaken of Ovid/MEDLINE and PubMed/EMBASE to review current corneal surgery simulation models and best-practice lamellar and endothelial keratoplasty techniques. A DALK simulation model was designed using Fusion 360 (Autodesk, San Rafael, California, USA) and printed with the J850 (Stratasys, Eden Prairie, Minneapolis, USA). A DMEK simulation model was created using thin films to allow the practice of the intracocular DMEK unfolding manoeuvres.

Results The DALK simulation model was produced with a shore hardness A value consistent with the mammalian cornea. Dimensions of the simulation models were based on the emmetropic model eye. Experienced corneal surgeons performed simulated surgery on the models and evaluated face and content validity.

Conclusion 3D printed and thin film models have practical benefits compared with cadaveric models; they do not decompose and can be standardised to model specific surgical scenarios. 3D printing is an innovative technology with applications across many fields, including healthcare. It allows for the
creation of customised simulation models for cornea surgical practice with a short lead time and reduced waste.

OP-7
PREDICTING CORNEAL ODEMA FROM SCHEIMPFLUG IMAGES OF FUCHS’ENDOTHelial CORNEAL DYSTROPHY (FECD)
Sanjay Patel*, David Hodge. Mayo Clinic, Rochester, USA
10.1136/bmjophth-2023-BCM.7

*Correspondence, Sanjay Patel: patel.sanjay@mayo.edu

Introduction We previously developed a model to predict improvement in central corneal thickness (CCT) after Descemet’s membrane endothelial keratoplasty (DMEK) for FECD from Scheimpflug images. The model incorporated parameters of pachymetry map isopach regularity and posterior corneal radius. In this study we assessed if adding corneal backscattering and pachymetric progression indices improved the predictive power of the existing model.

Methods The additional 37 parameters of interest were exported from the Scheimpflug camera software for images of eyes undergoing DMEK and were combined with all previous 180 parameters originally considered for the predictive model. Gradient boosting machine (GBM) models were used to determine the 5 parameters with highest relative influence. A regression model was derived from the 5 highest relative influencers and goodness-of-fit of predicted vs. observed improvement in CCT was assessed in derivation and validation groups.

Results Anterior and mid-corneal backscatter were high influencers along with isopach regularity parameters whereas pachymetric progression indices were not. After incorporating corneal backscatter, the predictive power (from R2) of the model in the derivation group was 79% (n=48). When the derivation model coefficients were applied to the validation group, the predictive power in the validation group was 72% (n=45).

Conclusions Combining anterior and mid-corneal backscatter with isopach regularity parameters creates a strong predictive model of CCT improvement after DMEK. However, the predictive power of this model did not improve the predictive power of the original model (derivation group, 80%; validation group, 78%). The predictive model could provide important ancillary test information to help inform clinical decision-making for FECD.

OP-8
ABSTRACT WITHDRAWN

P-9
EPIMAX-RELATED OCULAR SURFACE TOXICITY (EROST): THE GLASGOW EXPERIENCE
David Lockington*, Carl Mulholland, Elisabeth Macdonald. Tennent Institute of Ophthalmology, Glasgow, UK
10.1136/bmjophth-2023-BCM.9

*Correspondence, David Lockington: davidlockington@hotmail.com

Introduction In September 2021, NHS Greater Glasgow and Clyde’s formulary committee changed the first-line emollient management of atopic eczema to Epimax cream/ointment (Aspire Pharma). In early 2022 we realised some dermatology patients were presenting to ophthalmology with unexplained ocular surface toxicity, possibly related to their changed dermatological preparations.

Methods A retrospective case-note review of emergency eye clinic attendance involving such clinical presentations was undertaken to investigate this phenomenon.

Results We identified 37 patients with atopic eczema between January to October 2022 who attended with novel ocular surface toxicity, related in time-period to Epimax initiation (12