P-16 PREDICTING ABLATION SPHERICAL EQUIVALENT OF PRIOR LASIK TREATMENT FROM CORNEAL PACHYMETRY MAP

1Arthur Hammer*, 1Tjebo FC Heeren, 1, 2Romesh Angunawela, 1Kamran Saha. 1Moorfields Eye Hospital, London, UK; 2OCL Vision, London, UK

10.1136/bmjophth-2022-BCM.13

*Correspondence – Arthur Hammer: a.hammer@nhs.net

Purpose To provide a metric to differentiate between hyperopic and myopic ablation of a prior LASIK treatment based on the corneal pachymetry profile after laser vision correction.

Methods Pachymetry data were recovered retrospectively from patients who had previous LASIK for refractive purposes between 2019 and 2020. Patients with any corneal disorder were excluded. Ablation spherical equivalent was predicted from central to semi-Peripheral corneal thickness (CPT) ratio, both for values provided by Pentacam, and values computed from extracted raw pachymetry data.

Results Data were analysed for 140 eyes of 73 patients (42% female, mean age 40.9, SD 12.8). CPT-ratio cut-off for distinction between myopic and hyperopic LASIK was 0.86 for pentacam-provided values. Sensitivity and specificity were 0.7 and 0.95, respectively. Accuracy increased with computation of CPT ratio based on extracted raw data. Sensitivity and specificity were 0.87 and 0.99, respectively. There was a marked linear correlation between CPT-ratio and ablation spherical equivalent ($R^2=0.93$).

Conclusions CPT ratio cut-offs can correctly classify hyperopic versus myopic spherical equivalent of previous LASIK ablation. This could prove useful for increased accuracy of intraocular lens (IOL) calculations for patients with no historical data of their prior LASIK surgery at the time of cataract surgery planning.

P-17 CORNEA GUTTATA IN TRANSPLANTED DONOR TISSUE, IS THERE A NEED OF IMPROVEMENT IN THE EYE BANK SCREENING?

Arthur Hammer*, Maria Astete Rios, Azizur Rahman, Alfonso Vasquez-Perez. Moorfields Eye Hospital, London, UK

10.1136/bmjophth-2022-BCM.14

*Correspondence – Arthur Hammer: a.hammer@nhs.net

Purpose We describe 2 cases who underwent uneventful DMEK surgery but presented delayed recovery and had confirmed cornea guttata in the donor tissues. Both patients received a cornea from the same donor.

Cases A 78-year-old man with Fuchs’ dystrophy underwent triple procedure (phaco + IOL + DMEK) in his right eye and presented persistent central corneal oedema despite fully attached graft. Early rejection was suspected, and the oedema took 6 weeks to resolve completely at which point we confirmed central guttata in the donor tissue. His contralateral eye underwent DMEK surgery six months before and had clear cornea with no guttata. A 74-year-old man with corneal scarring and aphakic bullous keratopathy underwent DMEK surgery and had a persistent corneal oedema postoperatively even after initial rebubbling for a partially peripherally detached graft. Corneal oedema persisted for two months postoperatively despite full attachment and guttata identified. Both donor corneas were reported to have endothelial cell counts of 2600 cells/mm² preoperatively. In both cases confocal microscopy confirmed the presence of guttata in the donor graft. An imaging assessment from the donor tissues was performed with the eye bank and review from the literature is discussed.

Conclusion Fuchs’ dystrophy appears relatively common in the general population (4% in the USA); thus, a proportion of this condition might be expected in donor corneas. Identification of guttata in donor corneas with early stages of Fuchs’ dystrophy appears challenging. Current modalities of graft material screening (which appears to be standardised across Europe) are more orientated toward measuring the endothelial cell density and morphology and less toward detection of guttata. However, we believe this challenging case may not be isolated and thus improvement of eye bank screening would be of critical value to detect early Fuchs’ dystrophy in donor tissues and therefore improve graft survival.