Potential impact of oral flora dispersal on patients wearing face masks when undergoing ophthalmologic procedures

Santiago Angaramo, Janice C Law, Alexander Spyros Maris, Jonathan Edward Schmitz, Yuhan Liu, Qingxia Chen, Amy Chomsky

ABSTRACT

Objective The purpose of this study is to investigate the amount of oral flora dispersion towards the ocular surface in relation to various face mask scenarios.

Methods and analysis Thirty participants were recruited for this prospective cross-sectional study. Each participant was seated and instructed to hold a blood agar plate perpendicular to the bridge of their nose and facing downward. Participants then partook in three unique face mask scenarios: no face mask, surgical face mask and surgical face mask with tape securing the superior edge. The participants were instructed to forcefully exhale for 5 s three times. The primary outcome was the number of colony-forming units (CFUs) grown on each face mask scenario-specific plate.

Results Thirty participants were recruited for the study, and a total of 90 chocolate agar plates were successfully incubated. The proportion of detecting any CFU was 6.67% (95% CI: 0.818% to 22.1%) for no mask scenario, 0% (95% CI: 0% to 11.6%) for mask scenario and 3.33% (95% CI: 0.0844% to 17.2%) for mask-taped scenario. The mean differences in proportion of detecting any CFU were 3.33% (95% CI: 0% to 10%, p=0.309) for no mask versus mask taped, 3.35% (95% CI: 0% to 10%, p=0.307) for mask taped versus mask and 6.68% (95% CI: 0% to 16.7%, p=0.142) for no mask versus mask.

Conclusion This study showed no difference in bacterial dispersion towards the ocular surface when comparing no face mask, a surgical face mask without tape or a surgical face mask with tape.

INTRODUCTION

As a result of the COVID-19 pandemic, patients are using face masks more frequently. It has been well described that face masks decrease the forward spread of oral flora from an individual’s mouth and nose.1 2 However, the use of face masks redirects airflow towards the ocular surface. The impact of this redirected airflow is not well understood. Prior studies have demonstrated that the dispersion of oral flora may be reduced through face mask use by physicians and implementing a no-talking policy during intravitreal injections.3 4 However, the effect of face mask use on the dispersion of oral flora is still unknown. Thus, face masks that allow expiration to be redirected superiorly instead of forward may increase the risk of ocular contamination by oral flora when worn by patients during or immediately after eye procedures.

Endophthalmitis is a potentially devastating complication of eye surgeries and intraocular procedures. In the USA, the incidence of postoperative endophthalmitis following cataract surgery has been reported at 0.04%.5 Recent studies compared the bacterial isolates in endophthalmitis following intraocular surgery and found 8.2%–9.0% of isolates were Streptococcal species.6–8 Additionally, the reported incidence of post injection endophthalmitis in the literature ranges between 0.019% and 0.09%.9 10 A recent meta-analysis revealed that 30.8% of bacterial isolates in post injection endophthalmitis were Streptococcal species.11 The source of infection in oral flora-associated endophthalmitis is thought to be driven by contamination of the nasal and oral flora directly to the eye is a risk for infection that needs to be understood

Key messages

What is already known about this subject?

► Face masks redirect airflow towards the ocular surface. The impact of this redirected airflow on the dispersion of oral flora is unknown.

What are the new findings?

► No difference in bacterial dispersion towards the ocular surface was found when comparing no face mask, a surgical face mask without tape or a surgical face mask with tape.

How might these results change the focus of research or clinical practice?

► The results may help direct future studies regarding other benefits of taping one’s mask, such as decreased mask-associated dry eyes or spectacle/eye protection fogging.
so that proper interventions can be implemented. The purpose of this study is to investigate the amount of oral flora dispersion towards the ocular surface in relation to various face mask scenarios.

METHODS
Overview and patient involvement
This is a prospective, cross-sectional study on healthy adult volunteers, ≥18 years of age, who provided written informed consent. The study was conducted in accordance with the tenants of the Helsinki declaration. Patients were not involved in setting the research question, the outcome measures or the design and implementation of the intervention.

Study participants
Thirty participants were recruited for this study. Inclusion criteria included participants ≥18 years of age who answered no to COVID-19 screening questions, who could comfortably wear a mask and self-identified as able to forcefully exhale for 5s three times in three scenarios. Exclusion criteria included any participant with a pending COVID-19 nasal swab test, who could not comfortably wear a mask, who could not forcefully exhale while wearing a mask, who could not have surgical tape placed near their skin, who was using any form of antibiotics within 14 days of their participation, who self-reported a history of asthma or chronic obstructive lung disease or who had a history of cough, chills, fever, upper respiratory infection or gastrointestinal symptoms within 14 days of their participation. All participants were screened for COVID-19 symptoms on entrance to the facility.

Study design
Each participant was seated behind a plexiglass shield and provided gloves and an iPad to review the standardised instructions. Participants were then randomised into one of four possible sequences. Each sequence had a unique order of three possible face mask scenarios: (1) no face mask; (2) a surgical face mask (HUAFU HF8111 Particulate Respirator Disposable Face Masks); (3) a surgical face mask (HUAFU HF8111 Particulate Respirator Disposable Face Masks) and tape spanning from lateral canthi to secure the superior edge of the face mask. Each participant was allocated four standardised 100 mm circular chocolate agar plates which were labelled with a study ID # and a letter representing the face mask scenario. One plate was placed approximately 10 feet from the participant and served as a Room Control plate. Chocolate agar plates were used in lieu of blood agar plates to maximise sensitivity of detection, including recovery of fastidious flora (eg, Haemophilus spp). Participants were then provided the face mask scenario-specific plate and were instructed to place the plate at the bridge of their nose, facing downward and parallel to the floor (figure 1). Participants were then instructed to forcefully exhale for 5s three times, rotating the agar approximately 120° clockwise in-between each exhale. Participants waited approximately 5min in-between each face mask scenario, before being provided a new face mask scenario-specific plate and repeating the process.

All chocolate agar plates were sealed and transported to the microbiology lab. The plates were incubated for 48 hours at 37°C in a 5% carbon dioxide-rich environment. The number of bacterial colonies per plate was counted by microbiologists who were masked to the plate collection sequence. Bacterial species-level ID was not performed, and no organisms were excluded as the premise of this study was to be strictly quantitative in terms of CFU counts.

Statistical analysis
Sample size was modelled off prior studies that were able to detect a valid difference between various scenarios with 15 participants. \(^{3, 16}\) The proportion of detecting any CFUs and 95% CIs were reported for all three face mask scenarios. The 95% CIs for the mean proportion difference between any two face mask scenarios and their associated two-sided p values were constructed using a non-parametric bootstrap method with 100000 bootstrap samples stratifying on participant. Statistical significance was considered to be a two-sided p value <0.05. All data were analysed using R V.3.6.1.

RESULTS
Thirty participants were recruited for the study, and a total of 90 chocolate agar plates were successfully incubated. The proportion of detecting any CFU was 6.67% (95% CI: 0.818% to 22.1%) for no mask scenario, 0% (95% CI: 0% to 11.6%) for mask scenario and 3.33% (95% CI: 0.84% to 17.2%) for mask-taped scenario. The mean differences in proportion of detecting any CFU were 3.33% (95% CI: 0% to 10%, p=0.309) for no mask versus mask taped, 3.35% (95% CI: 0% to 10%,
the physician, patient or both. W
oral flora-
were Streptococcal species. Although the risk of infection is relatively low, the prognosis of oral flora-associated endophthalmitis is poor. For this reason, great efforts have been taken to reduce the risk of postprocedural and postoperative endophthalmitis. Common methods of oral flora-associated endophthalmitis prevention include physician face mask use or a no-talking policy during intravitreal injections. These methods are widely accepted and are supported by the 2018 European Society of Retina Specialists expert consensus recommendations. However, it is unclear if the bacteria linked with oral flora-associated endophthalmitis is emanating from the physician, patient or both. This question is of particular importance during the COVID-19 pandemic where patients are required to wear masks throughout the procedure. In our study, there were no statistically significant difference in the mean difference in proportion of detecting any CFUs between any of the three face mask scenarios. However, during the no mask scenario, there was a greater absolute growth of CFUs.

Our study has several limitations. Due to our study’s limited sample size, we were unable to detect if a valid difference exists between the various face mask scenarios. The decision to recruit 30 participants was based off prior study results. These studies were able to detect a valid difference between various scenarios with 15 participants. The chocolate agar plates used in this study do not accurately represent the ocular surface. Additionally, we did not identify what species of bacteria grew on these plates. Another limitation involves not controlling for facial shape or hair. However, we standardised the placement of agar plates, the degree of exhalation and the orientation of face masks to reduce any differences between participants. Finally, it has not been shown that additional CFUs on the ocular surface can be directly related to an increased risk of oral flora-associated endophthalmitis. Additionally, the authors are not aware of any current literature showing an increase or decrease in endophthalmitis rates following intraocular procedures or intravitreal injections during the pandemic. However, due to the exceedingly poor visual prognosis of oral flora-associated endophthalmitis, it is crucial we eliminate any potential risks.

Overall, this study showed no difference in bacterial dispersion towards the ocular surface when comparing no face mask, a surgical face mask without tape or a surgical face mask with tape. However, during the no mask scenario, there was a greater absolute growth of CFUs. Future studies with a larger sample sizes may be able to detect if a valid difference exists. Additionally, data from this study could help direct future studies regarding other benefits of taping one’s mask, such as decreased MADE or spectacle/eye protection fogging.

Acknowledgements This paper and the research behind it would not have been possible without the exceptional support of the Vanderbilt Eye Institute.

Contributors AC, JCL contributed to conception and design. AC, JCL, SA contributed to data collection. ASM, JES, GC, YL contributed to analysis and interpretation. SA contributed to first manuscript draft. SA contributed to critical revisions of the manuscript. AC, JCL contributed to obtained funding.

Funding Vanderbilt Eye Institute-Discovery Grant, Research to Prevent Blindness

Competing interests None declared.

Patient and public involvement Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

Patient consent for publication Obtained.

Ethics approval This study was approved by the Vanderbilt Eye Institute institutional review board (IRB# 201796), and all participants provided written informed consent.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available upon reasonable request. Not applicable.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD
Santiago Angaramo http://orcid.org/0000-0001-7836-884X

REFERENCES
Patients wearing face masks during intravitreal injections may be at a higher risk of endophthalmitis. *Retina* 2020;40:1651–6.


