Article Text
Abstract
Purpose The shortage of donor corneas represents a worldwide problem, and corneal endothelial cell (CEC) therapy might be a promising alternative approach. CEC can be implanted alone, which has shown limited efficacy, or with a scaffold that holds the cells together as a monolayer tissue, thus imitating Descemet membrane endothelial keratoplasty. We believe that endothelial cell density (ECD) >2000 cells/mm2, a cut-off value that eye banks use to provide quality tissues for transplantation to surgeons, should also be adopted as a parameter to define the quality of CECs as a new Advanced Therapy Medicinal Product for clinical applications in patients with endothelial dystrophies.
Methods We isolated and cultured CECs from one or more corneas of elderly age donors with ECDs higher than or below 2000 cells/mm2. CEC cultures were carried out on coated plates and on hydrogels with a preformed basement membrane (from TissueGUARD, Germany). Immunofluorescence with antibodies against ZO-1 was performed to evaluate the ECDs of the CEC graft obtained.
Results Our results suggest that primary cultures with ECDs>2000 cells/mm2 can be obtained on coated plated only when (1) CECs are isolated from one or more corneas of young donors; (2) CECs are isolated and pooled together from at least 2 elderly age donor corneas (if ECD>2000 cells/mm2) or 3 elderly age donor corneas (if ECD<2000 cells/mm2). Secondary cultures are all characterized by low ECDs. Hydrogels have been shown to be able to lead to increased ECDs after their release.
Conclusion Our protocol highlights the difficulties in obtaining cultures with ECDs>2000 cells/mm2. Despite being achievable with corneas from young donors, this becomes challenging when corneas from elderly donors are used, i.e., the overall majority of those collected by eye banks, particularly when corneas from elderly age donors with ECD<2000 cells/mm2 are considered as a source. One alternative would be to isolate CECs from more corneas, but this might raise the issue of antigenic stimulation, which could eventually lead to transplantation failure. Our strategy to overcome these challenges is the use of a preformed basement membrane as a scaffold for CECs. However, this challenging approach should be investigated more before proceeding to clinical application.
This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.