Background
Glaucoma is one of the leading causes of blindness worldwide. Primary open-angle glaucoma (POAG) is the most common type, accounting for 74% (58.9 million) of all glaucoma cases in 2020.1 For the same year, Kapetanakis et al estimated that 65.5 million people worldwide, as well as 2.1% of the European population aged 40+ years, suffered from POAG.2 Concerning visual impairment, the number of people of all ages is estimated to be 285 million, while those aged 50 years and older represent 65% of the visually impaired.3
POAG is not only one of the most common eye diseases worldwide, but also one of the major causes of blindness in Germany.4 5 In addition to age-related macular degeneration (AMD) and diabetic retinopathy, POAG continues to represent the second leading risk factor for becoming blind in Germany and in Western Europe.6 7 In 2006, glaucoma caused 15.4% of all cases of blindness in the German population.8 Despite a slight decrease in the incidence of vision loss in developed countries over the past decades, there is ample evidence of cataracts and diabetic retinopathy to still substantially increase its risk.4 9
After a diagnosis of POAG, the aim is to slow or to prevent any further progression of the disease by lowering the intraocular pressure (IOP). New IOP-lowering therapies, as well as new diagnostic and progression analysis methods, are continually developing and being improved.10 These enhancements in glaucoma treatment have helped many patients; nevertheless, lifelong regular follow-up examinations are necessary to ensure their effectiveness. The impact of POAG on the rate of severe visual impairment and blindness (SVI/B) in the general population is poorly understood, as POAG often shows no symptoms until advanced stages.11 Due to the interaction of various risk factors, POAG patients still suffer from progression of visual function loss, which implies the need to provide further evidence on this topic.
An advantage of studies focusing on the incidence of eye diseases concerns the potential to identify relevant risk factors which affect future visual outcomes. For the pathogenesis of SVI/B, relevant conditions include AMD, retinopathy, glaucoma and cataract as well as myopia, retinal vascular occlusions, injuries of the eye and optic nerve diseases.5 8 12–16 Based on the results of our previous study, which referred to the impact of incident eye diseases on the risk of SVI/B, in this study we analysed ten eye diseases as risk factors for the incidence of SVI/B in incident POAG patients.17
The epidemiology of SVI/B is also closely linked to demographic changes. Because the proportion of the elderly population will increase, there will be a further increase in both the prevalence of age-related eye diseases as well as in the proportion of individuals with SVI/B by 2030.5 7 18
As POAG patients often have comorbid eye diseases, one hypothesis was that these additional eye diseases lead to a significant increase of the risk of SVI/B, although it is unclear which of these might pose the greatest risk factor when considered simultaneously. Therefore, our outcome measure included not only the transition to blindness but also to severe visual impairment. The second hypothesis dealt with the risk of SVI/B, which may be highest in the first few years after diagnosis, due to the fact that patients only consult an ophthalmologist when they first start to notice vision loss, even though the glaucoma is often at an advanced stage.
In Germany, severe visual impairment is defined by a visual acuity of 1/20 and less, regulated at the state level by the State Blindness Benefit Law. According to German law, legal blindness is a reduction of visual acuity to 1/50 (0.02). According to the WHO and the international classification system, blindness is defined by the threshold of visual acuity of 1/20 (0.05), which, according to ICD-10 coding, also includes severe visual impairment. This study uses the ICD-10 coding system as a basis, which combines SVI/B in one coding number.
Hence, the first aim of our study was to analyse the risk of severe monolateral or bilateral SVI/B in incident POAG patients. Second, we examined the pace of progression to SVI/B from the onset of POAG. Our third aim concerned the analysis of comorbid eye diseases as risk factors for SVI/B controlling for multimorbidity.