Discussion
This study describes a three-generation family with a molecular and clinical diagnosis of ADVIRC. The pedigree is consistent with an autosomal dominant inheritance pattern, which is associated with a previously reported pathogenic variant in BEST1, namely c.715G>A (p.Val239Met).2 The affected members of this family exhibited the typical retinal features of ADVIRC with well-demarcated circumferential peripheral pigment changes, vitreous membranes/opacities and chorioretinal atrophy. In addition to retinal dystrophy, our patients also had signs of developmental ocular abnormalities, such as nanophthalmos, microcornea, closed angle glaucoma and early-onset cataract, which is consistent with prior reports.2 Yardley et al reported that the V239M mutation in BEST1 is associated with a more severe phenotype, including rod-cone dystrophy and posterior staphyloma. While we did not appreciate staphyloma in this family, there was a spectrum of rod-cone dysfunction, with the youngest affected family member having the most severely attenuated ffERG responses. However, the proband’s OCT did not demonstrate cystoid macular oedema, which is expected as a late macular involvement as seen in the father and grandmother. In addition, the maternal grandmother exhibited a severe decline in ffERG responses from the fourth to fifth decade of life, which was correlated with an equally rapid decline in visual field during the same time period.
To our knowledge, we have also characterised the youngest patient with ADVIRC reported to date in the literature. Given the rarity of the disease, there are very few published cases of affected children. In a cross-sectional study of 12 patients between the ages of 11 and 64, decreases in the ffERG correlated with advanced age.17 In contrast, the ffERG in our 20 months old proband was much more attenuated than her father. Most studies have reported normal visual acuity the first few decades of life, before progressing to visual impairment in later age.11 14 18 However, the visual behaviour in our affected proband was consistent with decreased vision in early childhood, which is indicative of a more severe phenotype than her father and paternal grandmother who had onset of symptoms at 15 and 20–30 years of age, respectively. These observations not only support the notion that this mutation in BEST1 can be associated with a severe phenotype, but also with variable expressivity within the same family.
The range of disease severity observed in our family is not surprising given that diseases caused by pathogenic variants in the bestrophin gene have high interfamilial and intrafamilial clinical variability such as the age of onset, the disease progression and visual impairment6 19 20 even among individuals with the same BEST1 variant.21 22 The aetiology of the variable expressivity and penetrance remains to be elucidated, however environmental factors and/or variants or polymorphisms in other genes interacting with the BEST1 gene may play a role.21–24 Esumi and colleagues demonstrated that transcription factors MITF, OTX2 and possibly CRX, may act as modifiers of BEST1 expression,20 25–27 although these mechanisms are still poorly understood.28 In addition, mutations in PRPH2, IMPG1 and IMPG2 can overlap phenotypically with BEST1, which suggest there may be some common pathway in the pathophysiology that is yet to be elucidated. The ADVIRC phenotype is hypothesised to be a result of aberrant splicing of BEST1. Using a minigene assay in HEGK293 cells, Yardley et al demonstrated that their missense pathogenic variants (p.Tyr236Cys, p.Val86Met and p.Val239Met) in BEST1 disrupts splicing and results in exon skipping and an in-frame deletion.2 However, Chen and colleagues studying a novel missense mutation, p.Gly83Asp, using the same minigene system failed to show any effect on splicing.11 In addition, there has been conflicting studies showing whether variants, p.Val235Ala or p.Val86Met, may affect pre-messenger ribonucleic acid (mRNA) splicing.6 7 29 Further studies are needed to enhance our understanding of the pathophysiology of BEST1 mutations as it relates to expressivity, penetrance and the phenotypic spectrum of BEST1-related retinopathies.
As highlighted by the initial clinical diagnosis of the grandmother, the differential diagnosis of ADVIRC in advanced cases, includes ADNIV,30 which is an inherited autoimmune disease due to mutations in the calpain 5 gene located on chromosome 11q13.5.31 Cases of ADNIV are marked by severe intraocular inflammation and retinal degeneration.30–32 The common features of these two autosomal dominant disorders, ADVIRC and ADNIV, are the inheritance pattern, cells in the vitreous, cystoid macular oedema, spots of peripheral retinal pigmentation and risk of retinal neovascularisation.30 However, the hallmark of ADVIRC in early to moderate disease is a sharp boundary between the normal and abnormal retina, which is not seen in ADNIV.30 In addition, the ffERG of patients with ADNIV typically have a disproportionate reduction in the b-wave amplitude in early diseases, but the ffERG responses can be diffusely extinguished in severe cases for both ADNIV and ADVIRC. These overlapping signs and symptoms underscore the need for genetic testing, especially in advanced disease.
In summary, ADVIRC is a slowly progressive retinal degenerative disorder with variable expressivity due to mutations in BEST1, which is associated with a wide spectrum of retinal disorders. Given the variable presentation and overlapping features with other degenerations, genetic testing is an essential diagnostic tool, especially in advanced disease. Follow-up is essential to monitor for and manage comorbidities. While there is currently no cure for BEST1-associated retinopathies, there is hope that ongoing work will eventually lead to the development of genetic treatment.33 34