Introduction
Cataracts are the most common cause of blindness worldwide. Several classifications are used to assess cataract morphology and density, such as the Lens Opacification Classification System (LOCS III)1 and the Wisconsin Cataract Grading System.2 Clinical slit-lamp classification methods remain subjective, with limited intergrader reproducibility (65%),2 but can be enhanced by deep convolutional neural networks.3 Also, several objective imaging methods have been developed to grade cataracts and correlate their severity with patients’ best-corrected visual acuity (BCVA).
Pentacam nucleus staging (PNS) with Scheimpflug tomography (Pentacam, Oculus Optikgerate GmbH) or Ocular Scattering Index (OSI) Optical Quality Analysis System (Visiometrics SL) devices are replicable and reliable methods for grading cataracts. Several studies have shown the correlation between Scheimpflug lens density and OSI indices, and their correlation with LOCS III classification, contrast sensitivity, phacoemulsification ultrasound parameters and BCVA.4–7
More recently, swept-source optical coherence tomography (SS-OCT) development has permitted easy, routine cataract lens imaging.8 Swept-source biometers can perform biometry and axial imaging with corneal, cataract and macular reports on a single machine. This new type of imagery has permitted new data interpretation, showing replicable and reliable lens density evaluation.8–10 A promising correlation exists between mean optical coherence tomography (OCT) lens pixel density and LOCS III classification, Scheimpflug imaging and OSI, which could facilitate further applications of SS-OCT biometers in cataract evaluation.9 10
Two leading study cohorts have been used to evaluate SS-OCT performance in cataract grading. First, Panthier et al9 10 focused on global lens density to predict cataract presence, with a cut-off at 73.8 pixels per unit. Then, Chen et al11 identified a strong correlation between SS-OCT nuclear density, Pentacam nuclear density and logMAR BCVA. However, nuclear density ignores cortical and posterior cataracts, and the large ranges in visual acuity used in prospective studies may be less representative of further clinical applications and lack sensitivity in mild cataracts.
SS-OCT provides reliable measures for both biometry and lens imaging. To date, SS-OCT lens evaluation has only focused on global lens density or nuclear density but never focused on localisation of opacities to better fit all types of cataracts. However, single-machine evaluation may be time and cost-effective for evaluating a patient’s cataract and its impact on BCVA. Before engaging new large and time-consuming prospective cohorts, new methods to grade cataracts using SS-OCT can be evaluated in retrospective cohorts, searching for linear correlation with BCVA. If effective, the method should be used in prospective cohorts to develop an SS-OCT index fitting to PNS or OSI to better indicate surgery. Considering the large amount of data provided by SS-OCT cataract density imaging from the anterior to the posterior part, machine learning may be an accurate method for correlating lens density and BCVA.
The aim of this study was to develop a method for analysing OCT lens density variation patterns to improve evaluation of all types of cataracts with mild to moderate loss of vision, and which better fits real-life applications.