Introduction
The impact of exercise on intraocular pressure (IOP) and health is an area of increased interest as the importance of physical activity for maintenance of overall health is widely promoted.1 IOP results from the net balance between the production and drainage of aqueous humour. Elevated IOP is a significant risk factor for the development of glaucomatous optic nerve damage.2 However, different types of exercise are recognised to impact IOP differently. Acute changes in IOP have been noted during and immediately after different forms of exercise.3 Aerobic exercise such as running and jogging are associated with transient lowering of IOP postexercise compared with baseline values.3–8 The mechanism is presumed to be stimulation of the sympathetic pathway, resulting in increased aqueous outflow via the trabecular meshwork.9–12 In contrast, studies focused on muscle strengthening resistance exercise have produced mixed findings with both acute increases and decreases in IOP being reported.13–19
A fundamental principle in muscle-strengthening exercise is that strength is developed when a muscle or muscle group works against increasing amounts of resistance or weight over a period of weeks and months.20 Although muscle strength can be gained by lifting relatively light loads, maximal strength gains are made when muscles lift heavy, near-maximal loads.21 22 Lifting heavy loads requires core stability or bracing that is achieved by trunk muscle contraction and, although discouraged, the initial effort phase of lifting a heavy load often results in a Valsalva manoeuvre. Core bracing and Valsalva-induced increases in intra-abdominal and intrathoracic pressures are transmitted to systemic vascular and intracranial transmural pressures.23 IOP is known to be affected by changes in systemic and intracranial blood pressure and, thus, could be impacted by fluctuations in these pressures during weightlifting exercise.24 A current gap in the literature is a detailed understanding of the magnitude and time course of effect acute strength training exercise with near-maximal training loads has on systemic blood pressure and IOP.
The aim of the current study is to measure IOP and systemic blood pressure responses during high intensity weight-lifting exercise. We hypothesise that IOP and blood pressure will be dramatically affected by near-maximum effort weightlifting (leg press),24 and the effect will be much more significant compared with what is measured previously.25 26 We also hypothesise that such sharp change of IOP could be affecting the retina and choroid thicknesses.27 The focus of this study is to characterise the time course of change measured before, during and after the leg press exercise. The novelty of our study is that the IOP is measured truly ‘during the rep’ while the participant is still bearing the weight. This is unlike other studies where the IOP is measured ‘during the set’ when the weight is racked and muscular pressure is released. Furthermore, we performed optical coherence tomography (OCT) to investigate the effect of leg press-induced changes to IOP and systemic blood pressure on retinal and choroidal thickness.
Methods
This prospective study was approved by the University of Auckland Human Participants Ethics Committee (UAHPEC reference number 022578) and participants provided written informed consent. All research adhered to the tenets of the Declaration of Helsinki.
Study participants
Healthy volunteers between the ages of 21 years and 30 years of age were recruited through social media from local powerlifting clubs. Participants included1: individuals with at least 2 years of experience in resistance exercises training,2 a training history that included at least two sessions per week,3 free of any musculoskeletal or cardiovascular limitations4 familiarity with a leg press machine, with this exercise routinely performed during training. Participants underwent a comprehensive ophthalmological assessment including detailed general, family and ocular history, visual acuity (Snellen visual acuity), refraction arc perimetry (using confrontation fields by Bott wand), contact tonometry (Goldmann applanation tonometry), slit lamp examination and a fundus examination. Retinal photographs and fundus autofluorescence were taken using the Eidon Centervue SLO or Optos (Optos plc) camera. Participants were excluded if they had any systemic health conditions such as hypertension or previous physical injuries that could impact their safe participation. Participants were excluded if they had a diagnosed chronic health condition such as cardiovascular disease including hypertension and or previous physical injuries that could impact their safe participation as well as evidence of ocular pathology due to narrow anterior chamber angles, elevated IOP greater than or equal to 21 mm Hg, optic nerve or retinal pathology, cup:disc ratio of greater than 0.7 or asymmetry of cup:disc ratio of greater than 0. 2. Participants were also excluded if they were not able to complete the study protocol.
Experimental procedure
The full study protocol is explained in the supplementary material (see text, Supplemental Digital Content 1, which details the exercise protocol used in this project). Briefly, the experiments included baseline measurement of participants’ IOP, height and weight. This is then followed by finding the measurements of ‘maximum weight to be lifted’ by each participant, while performing a set of leg press exercises (figure 1). The participants are then asked to perform three types of lifts of (a) one repetition at 95% of maximum weight (1RM), (b) six repetitions at 75% of maximum weight (6RM) and (c) isometric hold of 10 s against weight that is much heavier than maximum weight that could be lifted by the participant (ie, immovable) (ISO) (Supplementary Figure 1)).
Data analysis
All data were entered into an Excel spreadsheet and analysed in STATA V.15 (StataCorp 2017, College Station, Texas, USA). Change in IOP, mean systolic blood pressure (SYS), mean diastolic blood pressure (DIA), mean arterial blood pressure (MAP) and mean heart rate (HR) were calculated as the difference between the measurement during the exercise and the baseline measurement and expressed as ΔIOP, ΔSYS, ΔDIA, ΔMAP and ΔHR, respectively. Parameters for male and female subjects were compared with t-test; and paired t-tests were used to compare ocular and systemic variables pre and during exercise. Repeated measures multiple analysis of variance was used to see whether the physiological changes differed between the three exercises. Regression analysis was undertaken for 1RM, 6RM, isometric hold, maximum IOP out of the three exercises, retinal thickness change, retinal nerve fiber layer (RNFL), ganglian cell layer (GCL+), choroidal scleral interface (CSI) and choroidal thickness change. These data sets were analysed and compared with patient demographics, maximum IOP change, weights lifted and/or retinal and choroidal thickness changes. All tests were two-tailed, and results were considered statistically significant if the p value was <0.05.