To the best of our knowledge, this is the first study to describe the factors associated with STDM among Indigenous Australians in a remote primary-care setting. STDM prevalence was higher in both Indigenous men (13.1%) and women (15.8%) than reported in a recent national eye survey (6.0% Indigenous; 3.8% non-Indigenous),10 earlier Indigenous studies,11 and global data (7.4%).17 By contrast, the remarkably low STDM rate of 0.9% (n=394) among 46 853 Indigenous Americans screened by the Indian Health Service12 is noteworthy: In that cohort, STDM was associated with longer diabetes duration (as in this study), insulin use (a similar trend in this study), and a high HbA1c, that is, greater than 10% (86 mmol/mol) (greater than 9% (75 mmol/mol) in this study). While diabetic eye disease screening protocols differed between some of these studies, all protocols had adequate sensitivity for the detection of treatable diabetic maculopathy, that is, clinically-significant diabetic macular oedema (STDM), and it is unlikely the reported prevalence differences can be attributed to heterogeneous screening protocols.
Implications for primary care practice of age at diabetes diagnosis and established risk factors
The relatively younger age at diagnosis of diabetes among Indigenous than non-Indigenous Australians and the increasing life expectancy of Indigenous Australians may in part explain the higher prevalence of STDM observed among Indigenous Australians with diabetes in recent studies.10 11 Since most participants with STDM (78%) had already been treated for STDM, intensified primary care risk factor management post-STDM treatment may in part explain the lack of an association between STDM and some known modifiable retinopathy risk factors, such as HbA1c, blood pressure and lipids.
Elevated blood pressure is a risk factor for DR and maculopathy globally,15 22 23 but in this clinical population was not associated with STDM. As in most clinical populations with diabetes, HbA1c levels were suboptimal in this clinical population. However, the anticipated difference in HbA1c level between those with and without STDM was not observed, most likely due to the high STDM treatment coverage and post-treatment intensified glycaemic control in this setting, that is, the proportion with untreated STDM was 22%.
Given the prevalence of diabetes is almost sevenfold higher in Indigenous than non-Indigenous Australians in the 24–35 year age group and fourfold higher overall,3 these data suggest a need for intensified management of blood pressure and blood glucose levels in younger Indigenous Australians with diabetes.
We observed a non-statistical trend towards greater prescribed insulin in those with versus without STDM. Insulin use in T2D usually reflects longer diabetes duration, more advanced progression of the natural history of T2D with beta-cell failure, and of prior poor glycaemic control. Adherence to prescribed medications was not recorded routinely in clinical records, nor is linkage with pharmacy prescription dispensing data available in Australia. Therefore, it is possible that some medication usage misclassification may have occurred and reduced our ability to detect an association of for example, prescribed insulin with STDM.
The association between DR and nephropathy is well-known, and both are frequently asymptomatic. Therefore, detection in primary care of either renal or retinal disease in a person with diabetes flags the need to urgently screen for the other, and the urinary albumin to creatinine ratio, an important biomarker for microalbuminuria, and also plasma creatinine can now be performed as point-of-care pathology tests, ideal for remote healthcare services.24 25 Our findings also present a rationale for considering future diabetes eye screening studies of Indigenous Australians in renal clinics and dialysis centres, in addition to primary care settings, as such studies should facilitate DR detection and provide important insights into the observed STDM-renal association.
Obesity is a risk factor for the chronic complications of diabetes, including DR,22 yet we identified a novel inverse association between STDM and BMI. This may be due to unmeasured confounding, such as comorbid conditions, progressive beta cell failure with increasing duration of diabetes, or may reflect the need for caution in the standard interpretation of BMI that was developed as a measure of healthy weight in and for
Caucasian populations that have different body proportions to the Indigenous Australian population.26 27 A BMI cut-off of 22 kg/m2 has been suggested to define the upper limit of the healthy weight range for Indigenous Australians. Based on this cut-off, the proportion of participants in the non-overweight/obese range falls from 37.1% to 11.4% and the association between BMI status and STDM becomes statistically non-significant (p=0.157).
To date, risk management of diabetic eye disease in primary care has been based on treatment of established retinopathy risk factors (prevention), regular eye exams or camera-based retinopathy screening (early detection of disease), intensified treatment of risk factors (management of prevalent non-sight threatening disease) and referral of sight-threatening disease for tertiary treatment. More recently, DR risk calculators have been developed,28 29 but none are based on Indigenous eye data or specifically address risk of STDM, the most common cause of vision loss in diabetes. This is an important knowledge gap in Indigenous and eye health research. Until such a tool is developed, our findings together with current risk management approaches suggest strategies that may help address STDM risk in this setting, including risk stratification by diabetes duration; intensified management of risk factors associated with STDM, particularly in the younger diabetes-onset group, and primarily systolic hypertension and renal dysfunction. Furthermore, our findings strongly support an integrated telemedicine retinal screening programme in primary care services and/or community settings to augment existing ophthalmic services and address low screening coverage of Indigenous Australians with diabetes. Improved screening rates would not only identify people with or at high risk of STDM and related diabetes complications, but may alert clinicians when intensified management is needed to prevent STDM and related adverse outcomes. For example, formation of two or more microaneurysms between successive annual retinal screenings is a predictive marker for progression to STDM within 5 years.30 The importance of STDM extends well beyond the increased risk of vision loss and blindness, which is in itself a great individual, societal and public health burden. People with diabetic maculopathy are also at increased risk of incident CVD7 and premature mortality and so should be followed more closely and their risk factors aggressively treated.
We acknowledge both study strengths and limitations: importantly, this is the first study to examine STDM, the main cause of vision loss in diabetes globally, among Indigenous Australians. Furthermore, we shed light on modifiable clinical factors associated with the disproportionately high and increasing prevalence of STDM among Indigenous Australians with diabetes. We expect these findings to influence care provision of any person with diabetes who has any markers of renal dysfunction or duration of diabetes of at least 10 years by raising the treating doctor’s index of suspicion for STDM and awareness of the need for more frequent retinal screening. Importantly, the infrastructure and training for image-based diabetic eye screening in Indigenous primary care clinics has been largely funded by the Australian Government, and the screening is a reimbursable service under the national Medicare Health Benefits Scheme. Consequently, the clinical and cost effectiveness of the retinal screening model has already been established, and the granularity our findings provide will improve risk management of sight-threatening diabetic eye disease and lead to earlier detection and timelier treatment, thereby further improving clinical and cost effectiveness of this screening model.
However, the following limitations are noteworthy: there may be selection bias as some people with (known or unknown) T2D may not have attended a primary care clinic. Site differences may have contributed to the sex-specific associations with STDM, since male participants may have attended the Men’s Clinic rather than the General Clinic attended by female and male participants. However, unlike non-Indigenous studies where participation rates are similar by sex, Indigenous male participation rates are generally lower than Indigenous female participation rates in retinopathy screening studies. Causal inferences cannot be made given the cross-sectional nature of the data, that is, risk factor levels (eg, BMI, BP, HbA1c, levels, Albumin to Creatinine Ratio (ACR)) are reported at the time of assessment and not over time. T2D may be present for years prior to its formal diagnosis; hence, diabetes duration may be an underestimate. There may be measurement error in some clinical risk factors such as weight and blood pressure obtained by clinic staff. They were not verified by research staff. Due to the number with STDM, multivariate analysis was not undertaken. Similarly, the untreated STDM subset was too small to undertake subanalyses to compare clinical associations between treated and untreated STDM cases. Larger Indigenous STDM studies are needed to better understand the factors associated with STDM and the impact of STDM treatment on risk factor control, given the important association reported recently between diabetic eye disease and 10-year mortality in a remote Indigenous population.31
Finally, remoteness is a risk factor for other adverse health outcomes in Australia, notably diabetes,31 and may have been a contributing factor to the observed associations with STDM. However, our findings have face validity as they are broadly in line with current evidence. Moreover, our sample is representative of the Indigenous Australian population with diabetes on key parameters, such as prevalence of diabetes and risk factors for DR, and so we expect our findings to be generalisable to the Indigenous sector of the Australian population with diabetes.
The factors underpinning both the apparent susceptibility of remote-living Indigenous Australians to STDM and the different clinical profiles in Indigenous men and women, despite similarly high STDM prevalence rates, require further evaluation. Future Indigenous studies of diabetic maculopathy should include earlier (non-sight-threatening) stages of maculopathy as an outcome, now detectable with optical coherence tomography technology, and a broader range of exposures among Indigenous Australians in larger multicentre Australian studies that include urban, regional and very remote primary care settings. Given the high rates of STDM and blindness among Indigenous Australians and the approved use in Australia of fenofibrate for slowing retinopathy and maculopathy progression to sight-threatening stages and tertiary intervention,14 32 a fenofibrate intervention arm in future Indigenous primary care studies of diabetic eye diseases may be warranted. Fenofibrate can also slow the progression of renal dysfunction,14 33 which has recently been associated with 10-year mortality in this remote population.31 For successful implementation and effective outcomes of such studies and interventions, local Indigenous community support, culturally-sensitive protocols and collaboration with ophthalmic clinicians, ideally local, are essential.