Introduction
A better understanding of binocular visual function is required in modern society. People with monocular vision may suffer impaired visual function as the superiority of binocularity is well established in visual acuity (VA), reading speed, depth perception and movement detection.1–6 Binocular summation/binocularity is composed of probability summation and neural summation. When the light stimulates the photoreceptors in one eye, the corresponding photoreceptors in the contralateral eye are simultaneously stimulated. Thus, the probability of photoreceptor stimulation in the binocular conditions is higher with binocular than monocular viewing.3 Other studies reported that binocular viewing lowers the contrast threshold by up to 40%7 8 and the degree of summation is related to the complexity of the visual task.9 However, the functional role of binocularity has not been fully determined for daily activities. Common vision-threatening diseases that may cause monocular status include cataract, glaucoma and age-related macular degeneration, along with disorders of the central nervous system, such as cerebral infarction. A recent increase in the prevalence of the above-mentioned age-related eye diseases10–13 may be associated with increased traffic fatalities involving the elderly as binocular or monocular diseases can affect the integrated visual function essential for traffic safety. It is an emerging issue in our ageing society.
Kinetic VA (KVA) is the ability to identify approaching objects, whereas the ability to identify objects moving horizontally or vertically is called dynamic VA.14 There have been only a few investigations of KVA, and detailed studies have not been conducted on factors influencing differences in KVA ability. Rose3 reported that the threshold of movement detection for binocular viewing is quite small compared with monocular viewing, and the threshold for monocular viewing is higher than that for binocular viewing out to distances of 15–20 m, beyond which they are the same. This finding indicates that binocularity may contribute more at higher speeds to recognise distant objects.
Recent investigations suggest that dry eye (DE) affects numerous visual parameters including higher-order aberration, accommodation and functional VA (FVA).15 16 DE is a very common eye disease and the estimated prevalence is 10%–20% in the adult population.17 DE is diagnosed by a specific corneal examination, lacrimal examination and medical interview.18 FVA is worse in DE and many other age-related eye diseases.19 The previous investigation described that among various clinical factors, FVA significantly predicted the correct answer rate in driving aptitude tests, and it was a promising method for screening driving aptitude, including both visual and cognitive functions in a short time.20 However, the association between KVA and FVA has not been determined even though both are involved in the performance of watching objects continuously and are critical in driving safety.
KVA and FVA were examined under binocular and monocular conditions and analysed the correlation between these visual functions and ocular parameters. The aim of this study was to explore these correlations and find an appropriate method for determining the best visual performance with integrated visual function.