Introduction
Rare diseases are challenging
Rare diseases are defined by the European Commission as conditions which affect fewer than 1 in 2000 people, and in America as one which affects less than 200 000 people.1 Rare diseases affect 3.5 million people in the UK, 30 million people across Europe, 25–30 million people in the USA and 350 million people worldwide.2 To put this in perspective, 2.5 million people are living with cancer in the UK,3 and in 2015, a total of 101 200 people were diagnosed with HIV.4 Cumulatively, this is still less than the 1 in 17 people affected by a rare disease in the UK. While individual disorders are rare, collectively rare diseases pose a significant healthcare problem. These conditions are often life threatening and debilitating with ~30% of these patients with rare disease dying before they reach their fifth birthday.5 A significant issue for patients is in obtaining a diagnosis, with two in five individuals struggling to obtain an accurate and timely diagnosis, often encumbered by several misdiagnoses before the correct one is obtained.6 Even where a diagnosis is obtained, knowledge about a disease is often extremely limited by primary healthcare professionals, with treatment options even more so.
Early diagnosis and intervention is crucial for ophthalmic diseases
For many ophthalmic conditions, early diagnosis is crucial to preventing further degeneration in patient eyesight, as well as for optimal management and support of the patient. Of the approximately 285 million cases of visual impairment worldwide, including both common and rare diseases, four out of five cases are thought to be preventable. The global initiative ‘VISION 2020: The Right To Sight’ seeks to reduce avoidable blindness at 25% by 2019 by collecting evidence on visual impairment, training of eye care professionals, provision of eye care and elimination of social and economic barriers to eye care.7
The lack of existing rare ophthalmic disease registries to provide a comprehensive and exact figure of the total number of rare eye disorders presents a challenge to researchers hoping to collate what evidence is available. However, a large number of conditions have been documented by several sources, including: The 100,000 Genomes Project ophthalmic inclusion criteria,8 the Genetic and Rare Diseases Information Center,9 the National Eye Institute,10 the Retina International and the Irish Target 5000—Gateway to Vision.11 These conditions range from rod/cone abnormalities, macular dystrophies, photoreceptors and bipolar cell abnormalities, vitreoretinopathies and hereditary choroidal diseases.12
Diabetic retinopathy, a leading case of vision loss and adult blindness worldwide, is an example of a common complex ophthalmic disease where early diagnosis and treatment reduces the risk of blindness. This is evident in the success eye screening programmes and increased glycaemic control have had in reducing adult blindness caused by diabetic retinopathy in England and Wales, with inherited retinal dystrophies now taking over as the leading cause of adult blindness.13 Furthermore, eye screening programmes in Iceland have reduced diabetic retinopathy blindness from 2.4% to 0.5% between 1980 and 1994.14 Therefore, the identification of biomarkers that can help develop early diagnostic tests, stratify patients and predict disease progression is urgently required for other ophthalmic diseases, especially rare diseases, which can cause vision loss and do not have existing screening programmes. One such progressive rare ophthalmic disease is Leber congenital amaurosis (LCA), which begins in childhood and vision deteriorates as the patient ages due to a lack of early diagnosis and treatment. Treatment options are limited for the majority of rare ophthalmic diseases, but recent gene therapy trials have shown promising results in restoring vision to nearly blind patients with LCA and in other inherited retinopathies, such as choroideraemia.15
Next-generation multiomic analysis of rare disease
Multiomics is a biological approach to research which looks at multiple ‘omic’ terms, of which there are currently over 500.16 One ‘omic’ term, genomics, has been a key player in ophthalmic disease research; including the identification of disease-related genes and genomic areas in age-related macular degeneration, diabetic retinopathy and glaucoma.17 Crucially, whole-genome and whole-exome sequencing have enabled the prediction that as many as 3500 genes thought to cause rare disease (including rare ophthalmic disease) might be identified.18 Projects such as the UK 100,000 Genomes Project have been fundamental in introducing genomics into the healthcare system, with ongoing multiomics contributing to maximising diagnostic yield and improving our understanding of rare disease.8 This project aims to identify genomic variation such as a copy number variation and single nucleotide polymorphisms to provide diagnosis where patients have not received one already, improve our understanding of disease pathogenesis and identify novel treatment targets.
The National Ophthalmic Disease Genotyping and Phenotyping Network (eyeGENE) is an American/Canadian research body, created by the National Eye Institute, with the central aim of improving understanding of rare ophthalmic diseases, providing clinical and molecular diagnosis to patients and ultimately identification of therapeutic targets.19 As of December 2017, eyeGENE had an encouraging 130 publications, many of which were studies researching genetic mutations in rare ophthalmic disease.20 These publications include three review articles which highlight the promise for future retinal disease research using next-generation sequencing technologies; thus identifying a need to combine classical genetic mutation research with these high-throughput techniques to generate and analyse data on ophthalmic diseases.21–23 This fits with an expansion of research characterising several human diseases, including ophthalmic disease, at the molecular level using next-generation sequencing technology and a more informative integrated multiomic analysis.12
While genomic research has been the primary focus of ophthalmic research and indeed many other areas of human disease, several different types of ‘omic’ analyses are increasingly conducted in ophthalmic disease research. These include transcriptomics (the study of sum RNA levels),24 metabolomics (study of tissue metabolites),25 proteomics (protein analysis)26 and epigenomics (the study of variations in the DNA which are not a result of sequence-level modifications).27
Methylation: a key epigenomic marker of human disease
Methylation, an important epigenomic biomarker, is a reversible chemical modification often seen at cytosine residue in CpG dinucleotide sequences in DNA. Specifically, it occurs when DNA methyltransferases transfer a methyl group to the fifth carbon position on a cytosine from S-adenyl methionine, forming 5-methylcytosine.28 Changes in DNA methylation may result from somatic or environmental factors as well as heritable factors and these changes can persist both in the long or short term, with the potential for transgenerational inheritance. It is associated with repressive effects on gene activity; however, the function of DNA methylation has been shown to vary depending on the genomic situation.29 Methylation has been investigated as a marker of many diseases including several cancers,30 metabolic disorders such as hyperglycaemia,31 neurological conditions such as autism spectrum disorder32 and, importantly, several common eye conditions such as diabetic retinopathy,33 age-related macular degeneration34 and cataracts.35
Therefore, in addition to the classical genetic and genomic research described above, there is a need to assess the potential for methylation as an epigenomic marker of rare ophthalmic disease. If methylation was found to be an accurate and sensitive epigenomic marker, it has the potential to contribute to early diagnosis, management and reduction of vision loss; as well as identify novel therapeutic targets to improve treatment options for patients with rare ophthalmic diseases.
Aim and objectives
This review aimed to determine what evidence currently exists of differential methylation in rare eye diseases by:
Systematically uncovering what, if any, current literature exists relevant to methylation and rare ocular diseases.
Determining the method of methylation measurement and methodological rigour of any such studies.
Highlighting any existing discussion of applying differential methylation as a biomarker of rare eye disease.