Discussion
Ease of performing PPC
A good anterior capsulotomy is of utmost importance with regard to IOL implantation, long-term stability, centration and optical quality. The higher elasticity of the paediatric lens capsule poses a significant challenge for the surgeons and results in a difficult learning curve for manual CCC. On the other hand, PPC was technically easier to perform and had a fast learning curve. The PPC probe was effortlessly entered and snuggled out of the AC through a 3.2 mm clear corneal incision without damaging the corneal wound or touching the endothelium. The suction held the capsule well except for one case. Since the time taken to perform PPC was very small, it did not increase the surgical time than expected.
In case of small pupils, the probe was carefully manoeuvred under the iris edges, using only VEDs for moderate dilation of the pupil. Waltz et al also demonstrated that PPC can be performed in spite of small pupils upto 4 mm in size in adults with or without the use of iris hooks.7 In the current study, PPC was successfully performed in three cases of intumescent cataract and one traumatic cataract in spite of anterior capsular fibrosis and posterior synechiae. The instantaneous 360° creation of capsulotomy and simultaneous aspiration of liquefied cortex prevents any inadvertent tears or Argentinian flag sign in these cases.7 Although the sample size is too small to draw conclusions regarding the safety and efficacy of PPC in small pupils, traumatic and intumescent cataracts, we report favourable initial outcomes in such cases, but further evidence with a larger sample is necessary.
Centration of the PPC probe was achieved based on the surgeon’s experience and was challenging in the initial two eyes with mild inferior decentration due to the learning curve of the surgeon considering the difficult thumb-up holding position of the PPC probe, which is not usual for cataract surgeons. In children, the procedure is performed under general anaesthesia and it is difficult to centre the probe based on patients’ fixation as described in adults.7 The use of Purkinje images has been suggested as a guide to judge the centration of PPC probe.7 Future studies can also be planned using other tools such as ray-tracing for better centration of the PPC.
Properties of PPC capsulotomy
Different techniques have been designed to overcome the difficulties in manual CCC with modest success, such as the two incision push pull technique, that may sometimes result in incomplete capsulotomies with residual tags while vitrectorhexis and diathermy capsulotomies may not be as strong as manual CCC.11 12 PPC produced strong, round, well-centred (95%) and complete capsulotomies (95%) in the current study with no radial tears. Although current technologies like femtosecond capsulotomy have shown promising results in children,13 a few reports of tearing of its capsulotomy edges while dialling the IOL in adults have questioned its strength and integrity.14–16 In animal and human cadaveric eye studies, PPC capsulotomy edge tear strength was found to be three times greater compared with a femtosecond laser capsulotomy and four times higher compared with the manual CCC, which is considered as a gold standard.6 Scanning electron microscopy (SEM) studies of PPC on human cadaveric eyes demonstrated eversion of the anatomical edge of capsulotomy resulting in a smooth continuous functional edge which may explain its higher strength in spite of irregularities seen in the anatomical edge.5 However, an SEM study on surgical cases with radial capsular tears demonstrated a defect and split in the PPC edge with a corresponding focal tag. This led to the hypothesis that these focal tags and frayed collagen fibres, possibly due to dissipated thermal energy, may be the potential point of weakness compared with the smooth edges of manual CCC.8 17
Although initial clinical results of PPC in senile cataracts reported a 100% efficacy with all cases achieving complete capsulotomies without any adverse events,7 later studies have found higher rates of incomplete capsulotomies (72% completion rate), radial tears of its edges (4%)18 19 and structural irregularities with focal tags which have created doubts about the efficacy and strength of PPC.17 Even though the dispersive VEDs may play a vital role in preventing the dissemination of energy to endothelium, a possibility of its incomplete clearance between the nitinol ring and the lens capsule resulting in inadequate apposition, along with their undetermined electrical and thermal conductivity have been postulated to adversely affect the cleavage of the lens capsule. As a result, Mynosys now recommends use of VEDs of 300 000 mPas viscosity or less.18 A soft-shell technique using cohesive VEDs for the capsule and dispersive VEDs for coating the endothelium20 appears to be a reasonable option which can be explored in future studies. Recently, an improved version of PPC with better nitinol ring morphology for more uniform conduction, improved device suction and updated VED recommendations, improved completion rate to 96% but the anterior capsule tears remained high at 4% with irregular edges seen on electron microscopy in adults. All the tears were found to be subincisional, possibly due to persistent focal energy effect or variable suction across the capsule.8 In the current study, we found a 95% completion rate with one failed case using a dispersive VED due to faulty suction with no energy being delivered to the capsule. We did not witness any complication or adverse event intraoperatively as well as postoperatively with no radial tears in spite of irregularities and tags at the PPC edges, possibly due to stronger paediatric lens capsule. Although these tags did not cause any adverse event in our study, one needs to be careful not to engage or pull them during intraoperative instrumentation which may result in tearing of the capsulotomy edge.
PPC has been reported to create capsulotomies in the range of 5.1–5.3 mm in size, in human adult cadaveric eyes (PPC probe size 5.2 mm).5 Rabbit eyes having higher lens capsular elasticity were found to have larger PPC capsulotomy diameter compared with human eyes.5 Similarly, the higher elasticity of paediatric lens capsule might have resulted in slightly larger PPC capsulotomy size than expected (median PPC size=5.45 mm, IQR=5.39–5.75 mm, range=4.82–6.12 mm). Since no adult control group was included in this study, this variability in PPC size could be due to the different measuring techniques used in the two studies (image J software in the current series compared with direct measurement in the human cadaveric eyes). In view of smaller eyes in infants, it is desirable to use a smaller probe size which is currently being developed by Mynosys. It was noticed that a 11-month-old baby had larger PPC size (5.92 mm), possibly due to very high elasticity of an infant lens capsule; however, the efficacy of PPC in infant eyes needs further evaluation. We did not find any association between PPC size and the age of the patient unlike in femtosecond capsulotomy which has shown a significant negative correlation between age of the child and capsulotomy size.13 However, femtosecond laser capsulotomy size can be customised based on the patients’ requirements.
Theoretical safety concerns regarding PPC
Ocular tissue safety is maintained by the silicon cup insulating the nitinol ring, protecting the ocular tissues from the extremely brief electrical nanopulses. Since the cutting of the lens capsule is caused by mechanical cleavage without any cauterisation,10 a minimal rise of 1–2°C in temperature of AC has been noted in animal and human cadaveric eyes, which is not clinically significant.5 They also showed that there was no difference in the amount of morphological endothelial cell damage, corneal transparency, AC cells and flare and posterior capsular opacification (PCO) in the postoperative period between the PPC and the manual CCC groups.5 Although we did not find any significant, unexpected change in corneal transparency, AC reaction or amount of PCO, larger studies with corneal endothelial cell count and morphology are needed to comment on the safety of this technology.
There was no case with preoperative or postoperative zonular weakness/dialysis in the current series. Waltz et al performed a successful PPC on a case with traumatic zonular dialysis of six clock hour with a dense cataract.7 The PPC edges were reported to be strong enough to be held by iris hooks and withstand phacoemulsification stress. No extra zonular movement or stress was found while performing PPC on human cadaveric eyes.5 In paediatric cataract, the additional force required to perform manual CCC may cause additional stress to the existing zonules in a case with zonular weakness, thus making PPC a favourable alternative in such cases.
Specific advantages and disadvantages of PPC in paediatric cataract surgery
Femtosecond capsulotomy is also considered a good automated alternative to manual CCC in paediatric cataract surgery, but it poses some unique challenges such as logistic issues of moving a child from femtosecond room to the cataract theatre under general anaesthesia. Other issues with femtosecond laser include the tremendous rise in IOP on docking the eye, small pupils and corneal opacities hampering the formation of a complete capsulotomy and the extremely high cost of the technology, all of which can be solved using PPC.
The PPC console is smaller than femtosecond laser-assisted cataract surgery unit and can be readily incorporated in an operating theatre. Although the PPC technology is cheaper than that of femtosecond, the disposable probes indeed add to the cost of the surgery. The use of PPC in smaller infant eyes with the current size probe should be cautioned. A smaller size of PPC probe, may add better overlapping of the capsulotomy edges over the IOL with better centration and easier manoeuvring in the AC of smaller eyes. Femtosecond laser has also been shown to be safe and effective in paediatric cataract and can be used to create primary posterior capsulotomy, which is not advisable using PPC as there is no preclinical or clinical evidence about the safety and efficacy of its use in posterior capsulotomy. Since the posterior capsule is concave in shape unlike the flat anterior capsule and is situated very posteriorly, it may be difficult to induce adequate suction. Also, the suction applied may induce traction on the vitreous base with a theoretical possibility of vitreous loss or engaging vitreous into the suction cup possibly leading to retinal tears and detachment. Moreover, with the current size of the PPC probe, it is not possible to guide it under an anterior capsulotomy of 5 mm.
Limitations of this study are the small sample size and a very small subset of data for capsulotomy size (n=9) for our analysis. Only short-term results have been reported since the purpose of the study is to present the operative results; nonetheless, it is a significant limitation. Endothelial cell count with morphology and macular thickness could have added valuable quantitative information regarding the safety of PPC.
To conclude, PPC appears to be a safe, precise and accurate automated technology to obtain a round, well-centred and strong capsulotomy in paediatric cataract surgery within a short follow-up. This procedure may be even more helpful in the hands of beginners and those with little experience in paediatric cataract surgery, empowering them to contribute a greater share in eradicating needless childhood blindness. However, clinical randomised studies comparing its outcomes in paediatric and adult cataracts are needed to evaluate the PPC induced changes in corneal endothelium, AC and posterior segment; size, strength and morphology of the capsulotomy; adverse events; long-term outcomes with the incidence of capsular phimosis and PCO formation rates, against that of femtosecond and manual capsulotomy. While it works very well for intumescent lens, its suitability for capsulotomy in infants needs further validation since it was found that PPC produced a larger capsulotomy in an infant in our study.