Introduction
Macular oedema secondary to retinal vein occlusions (RVO) can cause significant vision loss.1 Vascular endothelial growth factor (VEGF) inhibitors have become the mainstay of treatment for cystoid macular oedema (CMO) due to RVO.2 RVO is an obstruction of the retinal venous system and can be classified into two primary categories depending on the location of obstruction: central RVO (CRVO) involving the entire central retinal vein, and branch RVO (BRVO) when only one branch of the central vein is affected.3 Additionally, hemi-RVO (HRVO) may be considered either as a subtype of CRVO as it involves the anterior part of the central retinal vein, or as a BRVO, since it is the first branch of the central retinal vein.4
Both CRVO and BRVO are associated with a decreased vision-related quality of life as evaluated by the National Eye Institute visual function questionnaire.5 6 Current treatment of RVO is aimed at the treatment of macular oedema, which is the leading cause of vision loss.7 In RVO, elevated secretion of VEGF leads to elevated vascular permeability and vasodilation.8–10 Long-lasting macular oedema usually produces secondary retinal pigment epithelial (RPE) changes, which themselves result in poor visual acuity.1 11 12
Intravitreal (IVT) injections of VEGF inhibitors such as bevacizumab, ranibizumab and aflibercept have displayed superior outcomes compared with the natural history of the disease.13–15
Significant improvements in visual acuity (VA) and macular oedema among patients with RVO receiving VEGF inhibitors have been demonstrated in randomised clinical studies including COPERNICUS, GALILEO, BRAVO, CRUISE and VIBRANT.16–19 However, there is very limited long-term data for outcomes of treatment for RVO. The CRUISE study was a 12-month study of 392 eyes comparing two doses of ranibizumab (0.3 and 0.5 mg) compared with sham in CRVO. At month 12, the mean gain in best-corrected VA (BCVA) was 13.9 letters in both the 0.5 and 0.3 mg groups.17 BRAVO was a similar design to CRUISE, recruiting 397 patients with BRVO. Over the 12 months of the study, mean BCVA improved by 16.4 and 18.3 letters in the 0.3 and 0.5 mg groups, respectively.17
Extension studies following BRAVO and CRUISE have given insight into outcomes of anti-VEGF therapy for RVO of up to 4 years but with significant loss to follow-up, with only 205 of the initial 397 BRVO and 181 of the initial 392 eyes with CRVO left at the end of the HORIZON study (2 years after starting treatment).20 Mean gains of 17.5 and 15.6 letters from BRAVO baseline were observed for patients initially randomised to 0.5 mg and sham groups, respectively. In contrast, mean change in BCVA of CRUISE patients at 12 months from HORIZON baseline was a loss of 5.2 and 4.1 letters in the 0.3 and 0.5 mg treatment groups, respectively.20 After 2 years of treatment, patients in the HORIZON study were still undergoing treatment for persistent fluid.
The RETAIN study was an extension of the HORIZON study which followed patients for a further 24 months. It included just 26 eyes from the BRAVO trial and 27 eyes from the CRUISE study, with data on 4-year outcomes. RETAIN study demonstrated 56% of patient’s required frequent injections; however, 80% of those with BRVO and 64.3% with CRVO were able to maintain a BCVA of 20/40 or better at 4 years.21 Of note, only 26 of 34 eyes with BRVO and 27 of 32 eyes with CRVO completed the study.21 A clinical study by Rezar et al included just 28 patients with RVO treated with bevacizumab or ranibizumab with a mean of 5 years follow-up. However, because of limitations of the study design, especially in bevacizumab-treated eyes, the mean time to start treatment was delayed 5 months with the major conclusion of the study being that final functional outcomes were significantly superior if treatment was initiated within <3 months of diagnosis.22
There is very limited data available on long-term (5 years +) outcomes of RVO treated with VEGF inhibitors and the number of injections required for these outcomes. The aim of this study was to provide such data from a real-world setting. This is a retrospective study assessing long-term outcomes in patients with macular oedema secondary to RVO at 5 years after initiation of anti-VEGF inhibitor therapy.