Introduction
Optical coherence tomography (OCT) is a non-invasive imaging technique that measures backscattered light to generate cross-sectional scans of biological tissues.1 In ophthalmology, OCT has contributed novel insights into choroidal and retinal anatomy significantly changing how we manage patients suffering from retinal disease, that is, neovascular age-related macular degeneration (nAMD).2 The most recent advance in OCT, so-called OCT angiography (OCTA), leverages improved acquisition speed and motion contrast techniques in order to detect choroidal and retinal blood flow.3–5 In contrast to fluorescein angiography, which masks the microvascular anatomy of choroidal neovascularisation (CNV) by leakage of fluorescent dye, OCTA allows investigating their phenotypical evolution in detail and in a non-invasive manner.
In CNV secondary to nAMD, OCTA has revealed two major microvascular patterns, each associated with distinct disease activity and the requirement for antiangiogenic treatment.6–9 Immature CNV lesions exhibit high vessel density and branching index, capillary sprouting, and anastomoses, and have been reported to be more active and accordingly require a higher number of anti-vascular endothelial growth factor (VEGF) intravitreal injections (IVI).6–9 In contrast, mature CNV lesions show an increase in vessel diameter with a paucity of capillaries and branching points.10 11 CNV has been described to undergo cyclic regression (ie, reduction of flow area and pruning of anastomoses) in response to IVI and subsequent reproliferation.10 11 With continued anti-VEGF treatment, reproliferating CNV undergoes phenotypical maturation with distinctive vascular remodelling (so-called ‘vascular abnormalisation’) and concomitant decrease in leakage activity.9 12
This preliminary evidence for an association between microvascular phenotype and disease activity has prompted a discussion about whether OCTA could inform anti-VEGF management decisions, such as selection of appropriate treatment intervals in a treat-and-extend anti-VEGF regimen or identifying when IVI ought to be stopped.11
However, it is still unclear whether the phenotypical maturation of CNV truly reflects their response to anti-VEGF treatment or it is an effect of the natural disease course and inherent features of the membrane type. The association of anti-VEGF treatment exposure and disease duration has impeded the investigation of this problem.
In this exploratory study, we therefore sought to compare the clinical aspects of patients showing mature CNV with those with immature CNV and to examine the association of anti-VEGF treatment exposure with the maturity status of the CNV when correcting for potential confounders including AMD disease duration.