Discussion
This retrospective and prospective cohort study describes the clinical profile and current practices for paediatric traumatic hyphaema in Western Australia and helps to establish the risk factors for poor visual outcome and long-term complications.
The geographical distribution of the study cohort (74% urban, 13% regional, 12% remote) generally reflects the population distribution in Western Australia (71.5% urban, 21.8% regional, 6.8% remote), suggesting that our cohort is broadly representative of the study population.13 As Princess Margaret Hospital was the only paediatric hospital in Western Australia at the time, it is unlikely that serious eye injuries requiring hospital admission would have been referred elsewhere.
Consistent with prior studies, the majority of traumatic hyphaemas occurred in males,9–11 14 15 and the most common place of injury was the home.14 16 The prevalence of injury related to sports (23%) and caused by missiles launched by ‘toy’ weapons (9%) was in general agreement with prior reports.9 10 However, the prevalence of a projectile mechanism of injury in our study was relatively high (72%), possibly reflecting a selection bias towards more severe injury in our study population that excluded patients managed exclusively as outpatients. These findings suggest that public health measures to prevent traumatic hyphaema in children may best be aimed towards safety in the home environment, eye protection in sports and awareness of the potential for eye injury from weapons commonly considered ‘toys’, such as slingshots and foam pellet guns.
Some of the defining challenges to healthcare in Western Australia are the delivery of care over a vast, sparsely populated area, and the differing needs of remote, regional and urban Australians.17 In our study, patients from remote areas experienced a small but significant delay in assessment by an eye specialist, suggesting reduced access to specialist care. Although patients from remote areas also faced longer hospital admissions and shorter duration of follow-up, these differences were likely driven by the challenges of travel and accommodation for patients and families from remote areas rather than injury severity. Despite these differences in time to specialist care and follow-up, residential remoteness was not a significant predictor of final visual outcome.
Acutely elevated IOP and angle recession were common complications in our study cohort. Postinjury IOP elevation >21 mm Hg was noted in approximately 50% of our study patients, slightly higher than that reported in a similar population,7 11 and IOP typically peaked within 2 weeks of injury. Although several patients required surgery, most surgeries were not directly related to their hyphaema. In line with previously published data,10 most hyphaemas resolved with medical management alone, and only a small minority (1%) required surgical washout of the anterior chamber. Angle recession represents a tear of the ciliary body at the iris root caused by blunt force trauma. It was observed in approximately half of patients in whom gonioscopy was done. To our knowledge, this is the first study to offer an estimate of the incidence of angle recession following traumatic hyphaema in children. By comparison, the incidence of angle recession following ocular contusion in adults varies from 71% to 83%.18 19 The reason for this difference is unknown, but may reflect greater elasticity of the iris root and resilience of the ocular tissues to blunt trauma in children. Among the subset of children who suffered injury from a projectile mechanism, however, the incidence of angle recession was significantly greater, and approached that reported for adults.
Closed-globe traumatic hyphaema in children has a favourable visual prognosis.7 Although the great majority of patients (83%) in our study had a final visual acuity of 0.30 logMAR (20/40) or better, a minority (17%) fared more poorly. Age <5 years at the time of injury and associated injury to the posterior segment were independent predictors of poorer final visual acuity. Amblyopia in the injured eye was a limiting factor in final visual acuity for several patients <5 years of age, serving as a reminder that clinicians should remain vigilant for secondary amblyopia in young patients with traumatic hyphaema. Among the posterior segment injuries associated with poorer visual outcomes was a case of choroidal rupture followed by varicella zoster retinitis in the immediate postinjury period. Although this sequence of events might be dismissed as incidental, viral retinitis in children has been linked previously with chorioretinal trauma.20
The recall examinations conducted between 5 and 12 years postinjury revealed several important insights. Previous cohort studies in adults estimate the incidence of secondary glaucoma following traumatic hyphaema at 5%–10% within 10 years of injury.19 21–23 If similar rates also apply to children, then we might have expected one or two patients in our study cohort to have developed secondary glaucoma, yet none had. Although perimetric and structural markers of glaucoma were absent,24 the recalled patients did exhibit a significant asymmetry in IOP (injured eye IOP > sound eye IOP), which is a known risk factor for glaucoma.25 Additionally, Girkin et al
26 previously showed that advancing age is an independent risk factor for glaucoma following ocular contusion, so although the patients in our study did not yet have glaucoma their ultimate risk may not be reduced but rather delayed owing to their young age. In this way, although glaucoma was not evident in the recall examination cohort, this finding does not argue against long-term monitoring for post-traumatic glaucoma.
Although visual field testing performed at the recall examination showed no changes indicative of glaucoma,24 injured eyes had a small but significant decrement in MD compared with the sound eye. This asymmetry was not apparent in PSD scores, however, suggesting that the MD asymmetry may relate to subtle traumatic optic neuropathy acquired at the time of injury, rather than glaucomatous change.
Perhaps most intriguing, the recall examination revealed significant relationships between ACD asymmetry, IOP asymmetry and angle recession. Indeed, the mean ACD asymmetry in patients with angle recession was 0.13 mm greater than in patients without angle recession, and a linear regression showed that for each 0.1 mm increase in ACD asymmetry, IOP asymmetry is predicted to increase by 0.9 mm Hg. Although limited by a small sample size, our results suggest that ACD asymmetry may be a meaningful surrogate biomarker for angle recession and glaucoma risk. Since ocular biometry is generally well tolerated and non-invasive, it holds promise as a means of assessing structural damage in patients with traumatic hyphaema, such as children, who may be intolerant of gonioscopy.