Background
Genetics and molecular basis
Von Hippel-Lindau (VHL) disease is a rare autosomal dominant disease with an incidence of 1 in 36 000 births.1 It is caused by germline mutations in the tumour suppressor gene VHL (3p25-26), which lead to the development of different tumours throughout life: retinal and central nervous system (CNS) hemangioblastomas, renal cancer, pheochromocytomas/paragangliomas, endolymphatic sac tumours, pancreatic cystadenomas and neuroendocrine tumours, cystadenomas in the epididymis and broad ligament.1 2
VHL patients are heterozygous at birth, and only cells that undergo a second-hit somatic mutation of the wild-type allele (loss of heterozygosity)3 will develop tumours.4 This loss of heterozygosity will cause a subsequent loss of function of the protein complex/ubiquitin kinase of which pVHL is a key element. This results in accumulation of hypoxia-inducible factors (HIFs) within the cytoplasm and their secondary translocation to the cell nucleus, where they initiate the transcription of a number of genes involved in cell proliferation, angiogenesis, vascular tone and erythropoiesis, among other processes.5 The increased expression of these factors is associated with the development of highly vascular tumours.6
Ophthalmic characteristics
Retinal hemangioblastomas are a well-recognised finding in VHL. They are among the most frequent (49% to 85%)7 and earliest presenting tumours in the disease, so the ophthalmologist is necessarily involved in the follow-up and care of these patients.2 7
Most hemangioblastomas are symptomatic at presentation,8 one-third of patients have multiple tumours and up to half the patients have bilateral involvement.7 The most frequent location is the peripheral retina, although they can be found juxtapapillary.9
Early tumours are small red-round lesions located between an arteriole and a venule. Well-established tumours are seen as a round orange-red mass, located in the temporal periphery with dilatation, and tortuosity of the supplying artery and draining vein extending from the optic disc. Secondary effects of retinal hemangioblastoma are predominantly exudative (25%) causing leakage with macular exudate, or tractional (9%), causing retinal detachment. Macular pucker is observed in 9% of the eyes. Other complications include vitreous haemorrhage, secondary glaucoma, phthisis bulbi and loss of the eye.7
The diagnosis can be made by screening of patients at risk or in symptomatic patients with macular exudate or retinal detachment. Funduscopy, fluorescein angiography and optical coherence tomography (OCT) are useful for the diagnosis.
Without treatment, and sometimes regardless of the standard treatments, these lesions continue to grow and affect the visual function.9
Depending on the size and the location, there are different treatment options. The visual outcome is greatly dependent on the size, location and number of tumours and the presence of complications such as exudative or tractional retinal detachment.7 Small peripheral lesions are usually treated with laser photocoagulation, while in larger ones—especially those with exudative retinal detachment—cryotherapy is applied. Photodynamic therapy has been used with uneven results, such as anti-vascular endothelial growth factor (VEGF) drugs (bevacizumab, ranibizumab), which do not provide long-term cessation of tumour growth.10 Other treatments include brachytherapy. Potential complications, such as non-absorbing vitreous haemorrhage, epiretinal fibrosis and tractional retinal detachment, can be treated by vitreoretinal surgery and, if necessary, endolaser photocoagulation.11
Treatment of juxtapapillary and optic nerve hemangioblastomas is particularly difficult and risky. As tumours may remain quiescent for many years and due to the high risk of iatrogenic visual loss with standard treatments,11 in asymptomatic juxtapapillary hemangioblastomas without exudation, only monitoring is recommended.
To date, no pharmacological treatment has proven effective in changing the course of the disease.12
In vitro assays
Propranolol is a well-known non-selective β-blocker agent marketed for more than 50 years, used for cardiac and neurological diseases.12 13 It has proven effective in the treatment of infantile hemangioma, and nowadays it is considered its first-line treatment. It has also been tested in some malignant tumours. The results of different studies support the role of β-adrenergic signalling pathways in the regulation of breast tumour progression,14–17 and—as it inhibits cell proliferation on in vitro cell cultures—it has been proposed a role on antiangiogenesis and antitumour effects.5 12 15–17 A recent publication describes its off-label use as an adjuvant treatment in melanoma, where it seems to protect patients from recurrence, what could lead to a decrease in patients’ mortality.18
In a previous work, our group developed primary cell cultures from surgically resected CNS hemangioblastomas and performed in vitro assays with propranolol.5 We demonstrated that propranolol decreased the expression of HIF target genes in hemangioblastoma cells and affected their viability, probably acting as an antiangiogenic agent inhibiting VEGF, and as a proapoptotic drug. Based on these previous outcomes, we wanted to evaluate the safety and effectiveness of propranolol for the treatment of retinal hemangioblastomas in VHL patients, to determine if retinal hemangioblastomas decrease in size or remain stable compared with baseline, after the completion of the treatment period.