Discussion
In this study, we obtained good clinical results using a new training method for cataract surgery designed for residents. This new method features well-defined steps that are performed in the reverse order to that of actual surgery, such that residents learn the easiest step first. We believe that any educational programme for surgery should follow a systematic methodology that is reproducible and can be compared with other methods in terms of clinical results,8 with the aim of standardising the teaching procedure. The current method should be easily reproducible. The clinical outcomes obtained with this method were comparable to those reported internationally, and superior to those recorded previously in our hospital.20
In our study, we excluded patients with comorbidities. These patients might have acted as confounders in the analyses of complications. We are aware that this might present a risk of bias since patients without comorbidities tend to have fewer complications; however, this ensures better homogeneity of the sample. Patients with comorbidities were also excluded in a study by Carricondo.13
Moreover, we excluded complex patients because previous studies failed to report the criteria used for selecting patients who could be operated on by residents. The complication rates of phacoemulsification surgeries performed by residents are high.12 16 21 22 In one study,16 the majority of cases of vitreous loss occurred in situations in which the technical difficulty of the surgery could be predicted, or in eyes with a small pupil or a nuclear sclerosis grade of 4+; this emphasises the importance of patient selection for surgical training.
Evaluation checkpoints are an important component of our training method. The learning curve of a surgical technique sometimes entails the performance of a large number of actual surgeries. However, during the learning curve period, patients may be at higher risk of suffering complications. By requiring the students to pass through the five checkpoints four times, the educational objectives could be met after fewer surgeries. Therefore, surgeries were considered to be performed independently after the twentieth procedure. In this study, the students learnt faster and the complication rates were comparable to previous reports in the literature.13 23–27
By the end of the 1990s, the overall complication rates of surgeries performed by residents have decreased.12 28–30 In seven studies published at that time, the rate of PCR among resident-performed surgeries was 2%–10%, while the vitreous loss rate ranged from 1.8% to 10.4%.23–27 In 2010, Carricondo13, in Brazil, reported PCR rates of 11.49% for uncomplicated cataracts. Subsequent studies28 29 31–33 reduced these rates even further (2%–5%), although bias was present and it was unclear which complications were included in each analysis. These large variations in reportage must be reduced to allow comparison of complication rates among studies. National electronic data sets, such as used by the Royal College of Ophthalmologists,19 have allowed for closer monitoring of complications. PCR rates for less experienced trainees were as low as 2.3%.30 We chose to ascribe greater importance to PCR in our study because it was the most frequently encountered complication and directly affects the visual prognosis.28 In a recently published study,34 a reverse order teaching method was also assessed. However, although the rate of PCR was lower after the implementation of the educational programme, the difference was not significant. This may have been due to the small sample size; that study involved 32 surgeons and 609 patients.
Teaching surgery in a step-by-step manner requires detailed records of each student’s improvement.9 At our institution, prior to the implementation of the new teaching method, patient medical records were irregular and there was no standardised method for documenting complications (except for PCR); this led to heterogeneous information regarding the various complications. Furthermore, there was no facility for recording difficulties, that is, the steps that students found most difficult to master. Hence, there was a clear need to develop and systematise a logbook system. In a preliminary review of charts before the implementation of this new method, a PCR rate of 19.89% was detected among R2 and R3 procedures.20 This data, while used as a benchmark for our study, was not included in the study due to statistical and methodological bias. The high rate of complications present in the service did not allow for the comparison of previous and current teaching methods.
We based our logbook on that of the Royal College of Anaesthetists.19 In this individual record book, checkpoints were used to monitor the progress of the residents. Other fields were used to describe complications and any challenging aspects of the surgery. A resident could move on to the next checkpoint only after approval and with the signature of the supervising surgical preceptor. Thus, the requirement for a signature from the preceptor forced the student to perform all of the required steps and surgeries. This enabled us to obtain more reliable data on complication rates, and also allowed us to implement a teaching method that could be reproduced regardless of student or teaching staff. By standardising the patients, techniques and participating residents (in terms of their proficiency), it should be possible to compare our results with those of future studies.
This study presents limitations that are inherent to observational series. First, the lack of adequate chart data previous to the implementation of this method did not allow for statistical comparison with other teaching methods. Second, complications were registered as occurrences; however, the stage of complication was not registered, this could further help better orientation regarding critical surgical steps. Third, clinical data, such as surgical time, endothelial cell count and corneal central thickness, are not registered, at our service, in routine cases that are used for surgical teaching. Further studies should address these issues, as well as evaluate the implementation of this method for other surgical techniques or evaluation of the learning curve within different stages of learning.
Most studies in the literature focus on the data produced by surgeons in training or residents, not on the training itself. To the best of our knowledge, a fully standardised teaching procedure has not yet been previously reported. This technique should allow for adequate evaluation of residents’ technique within services or across different locations. This should also allow for evaluation of different stages during learning curves.
This study showed that instructing residents in the steps necessary for phacoemulsification in reverse chronological order presents low intraoperative complication rates. The creation of a logbook system was useful for instilling the discipline required for progression through the steps, and the logbook also served as a reference tool for evaluating the progress of individual students. Further reduction of residents’ phacoemulsification complication rates over time should be the goal of future studies.