Materials and methods
Preparation of microorganisms and inocula
The EP reference strains: Pseudomonas aeruginosa (PA) (ATCC 9027), Candida albicans (CA) (ATCC 10231), Aspergillus brasiliensis (AB) (ATCC 16404), Staphylococcus aureus (SA) (ATCC 6538), Clostridium sporogenes (CS) (ATCC 19404) and Bacillus subtilis (BS) (ATCC 6633), and the strains: Staphylococcus epidermidis (SE) (ATCC 12228) and Enterobacter cloacae (EC) were obtained from the American type culture collection (ATCC, Manassas, Virginia, USA) and from Labor Berlin – Charité Vivantes GmbH (Berlin, Germany).
For inocula preparation, lyophilised pellets (PA, CA, AB) or fresh colonies isolated on blood agar plates (SA, CS, SE, EC), were subcultured under optimal growth conditions, according to the manufacturer’s instructions, and their concentrations were measured according to the McFarland turbidity standards. Serial dilutions were performed to obtain an inoculum concentration of 10–100 colony-forming units (CFU) in 1 mL of Tryptone Soya Broth (TSB) (OXOID Deutschland GmbH, Wese, Germany). Only for AB, the inoculum was prepared directly from the lyophilised pellet without previous subculture. Inocula were then plated on Columbia-blood-agar plates (OXOID Deutschland GmbH, Wese, Germany), incubated at 35°C, and CFU were counted after 48 hours in order to determine the actual microbial concentration of each inoculum.
From each microbial strain, 10–100 CFU were inoculated in 9 mL of cornea organ CM (Biochrom GmbH, Berlin, Germany), which contains 2% of Australian fetal calf serum, penicillin G 62.5 µg/mL, streptomycin 100 µg/mL and amphotericin B 2.5 µg/mL in Modified Eagle’s Medium (MEM) with Earl’s salt.
For each tested condition, CM samples, positive and negative controls were assessed at least in triplicate and repeated in three different experiments (n=9).
Group A
The spiked CM was gently withdrawn with RESEP, incubated at room temperature for 20 min under continuous stirring and finally injected into BACTECTM blood culture bottles. RESEP is a syringe-like, patented, CE-marked device containing a resin mixture to remove antibiotic residues from liquid samples before performing microbiological test. After treatment, the CM samples containing CS were injected in BACTEC Plus Anaerobic/F culture vials, and the samples containing AB, BS, CA, PA and SE in BACTEC Plus Aerobic/F culture vials. The samples containing SA were tested in both BACTEC Plus Anaerobic/F and Aerobic/F culture vials. Finally, the bottles were incubated in BACTEC 9120-FX System at 36°C±1°C until a positive reading or for at least 14 days. The time to detection of microbiological growth was automatically recorded by the BACTEC 9120-FX system. Each positive culture bottle was analysed for the presence of pure culture by subcultivation on blood agar plates, and the detected germs were identified by morphological analysis and mass spectrometry (MALDI-TOF MD, Bruker, Billerica, Massachusetts, USA).
Group B
In group B, the spiked CM samples were directly injected into the respective BACTEC Plus culture vials.
Positive controls (growth controls)
Inocula with 10–100 CFU in 1 mL TSB served as positive controls (growth control). CS inocula were directly injected in BACTEC Plus Anaerobic/F; AB, BS, CA, PA and SE inocula were injected in BACTEC Plus Aerobic/F culture vials. Also here SA inocula were assessed in both BACTEC Plus Aerobic/F and Anaerobic/F culture vials. All BACTEC bottles were subsequently incubated and processed as described for group A.
Negative controls
Nine millilitres of sterile TSB withdrawn in RESEP, incubated under continuous stirring at room temperature for 20 min, and then inoculated in BACTEC Plus Aerobic/F and BACTEC Plus Anaerobic/F culture vials, were used as negative control for group A. As negative controls for group B, a direct inoculation of 9 mL of TSB in BACTEC Plus Aerobic/F and BACTEC Plus Anaerobic/F Culture bottles was performed. All blood culture bottles were incubated in the BACTEC 9120-FX system as described before.
UHPLC determination of antibiotic and antimycotic residues
The antibiotic and antimycotic content in the sterile CM, before and after treatment with RESEP, was determined by UltiMate 3000 Ultra High Liquid Chromatography (UHPLC) (Dionex, Sunnyvale, California, USA). Penicillin G and streptomycin sulfate concentration were determined using UHPLC column Poroshell 120 SB-C18 2.7 µm, 4.6×100 mm (Agilent, Santa Clara, California, USA), and amphotericin B concentration with UHPLC column ULTRA C18 3 µm 150×2.1 mm (Restek, Bellefonte, Pennsylvania, USA). For these measurements, CM was quickly thawed at 37°C in a water bath, 9 mL of CM were withdrawn with RESEP in triplicate, incubated under continuous stirring at room temperature for 10, 20, 30 and 60 min, and immediately processed and injected in UHPLC system.
Initial content and the content after 20 min of RESEP treatment were determined on three different CM batches.
Data analysis and statistics
For each group and each tested microbial strain, the percentage of positive BACTEC readings, the mean time to detection and standard errors of the means were calculated and represented by box plot generated by BoxPlotR web-tool, http://boxplot.tyerslab.com. For each microorganism, Fisher’s exact test was used to compare the number of positive BACTEC readings between the positive controls and groups A and B, respectively, in 2 by 2 contingency tables. The time to detection differences between groups were analysed by Kruskal-Wallis one-way analysis of variance by ranks and Dunn’s post hoc test for non-parametric pairwise multiple comparisons in independent groups. A p value <0.05 was considered statistically significant. In addition, results for microorganisms with differences >50% in sample size between groups (A, B and control) due to FN results were excluded from Kruskal-Wallis and Dunn’s analysis.
UHPLC peak areas for penicillin G, streptomycin sulfate and amphotericin B were compared with the standard area and mean concentration; SD and percentage of initial content were calculated.
The sensitivity in groups A and B was calculated as the true positive (TP) results divided by the TP plus FN result [(TP)/(TP +FN)] and expressed as a percentage. The specificity was calculated as the true negative (TN) results divided by the TN plus false positive (FP) results [(TN)/(TN +FP)] and expressed as a percentage.