Article Text

Download PDFPDF

Original articles
Visual performance in a flight simulator: multifocal intraocular lenses in pilots
  1. Lee Lenton
  1. Vision Eye Institute Clinic, Brisbane, Queensland, Australia
  1. Correspondence to Dr Lee Lenton, Vision Eye Institute Clinic, Brisbane, QLD 4066, Australia; lee.lenton{at}live.com.au

Abstract

Objective To compare the performance of adults with multifocal intraocular lenses (MIOLs) in a realistic flight simulator with age-matched adults with monofocal intraocular lenses (IOLs).

Methods and Analysis Twenty-five adults ≥60 years with either bilateral MIOL or bilateral IOL implantation were enrolled. Visual function tests included visual acuity and contrast sensitivity under photopic and mesopic conditions, defocus curves and low luminance contrast sensitivity tests in the presence and absence of glare (Mesotest II), as well as halo size measurement using an app-based halometer (Aston halometer). Flight simulator performance was assessed in a fixed-based flight simulator (PS4.5). Subjects completed three simulated landing runs in both daytime and night-time conditions in a randomised order, including a series of visual tasks critical for safety.

Results Of the 25 age-matched enrolled subjects, 13 had bilateral MIOLs and 12 had bilateral IOLs. Photopic and mesopic visual acuity or contrast sensitivity were not significantly different between the groups. Larger halo areas were seen in the MIOL group and Mesotest values were significantly worse in the MIOL group, both with and without glare. The defocus curves showed better uncorrected visual acuity at intermediate and near distances for the MIOL group. There were no significant differences regarding performance of the vision-related flight simulator tasks between both groups.

Conclusions The performance of visually related flight simulator tasks was not significantly impaired in older adults with MIOLs compared with age-matched adults with monofocal IOLs. These findings suggest that MIOLs do not impair visual performance in a flight simulator.

  • clinical trial
  • field of vision
  • optics and refraction
  • visual perception

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

View Full Text

Statistics from Altmetric.com

Footnotes

  • Contributors LL planned, conducted and reported the work described in the article and is responsible for the overall content as guarantor.

  • Funding The study was supported by a research grant from Carl Zeiss Meditec AG.

  • Competing interests None declared.

  • Patient consent Obtained.

  • Ethics approval Queensland University of Technology Human Research Ethics Committee.

  • Provenance and peer review Not commissioned; externally peer reviewed.

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.