Introduction
One common ocular manifestation following trauma is commotio retinae (CR), a transient opacification of the retina thought to result from photoreceptor disruption.1–3 Visual sequelae of CR range from transient blurred to permanent loss of vision, with many reports demonstrating spontaneous improvement in vision over time.4–7 CR has been well studied with optical coherence tomography (OCT). Common OCT findings include an increase in reflectivity/intensity of the hyper-reflective band attributed to the inner-segment/outer-segment junction,4 6 8–10 also called the ellipsoid zone (EZ); however, loss or attenuation of this band has also been noted.5 7 10 Recovery of the EZ has been reported,4 7 8 10 as has persistent disruption.5 6 9 10 Given the range of OCT findings in CR, grading systems have been proposed to better predict functional recovery, which suggest that recovery of vision is dependent on the region and extent of the initial photoreceptor disruption, with the integrity of the EZ important for visual recovery.11 12
While assessing photoreceptor integrity is possible with OCT, the limited lateral resolution of OCT precludes visualisation of individual photoreceptors. By correcting for the eye’s monochromatic aberrations, adaptive optics scanning light ophthalmoscopy (AOSLO) provides in vivo imaging of the photoreceptor mosaic with cellular resolution,13 14 potentially holding prognostic value for patients suffering from head trauma. In an increasing number of cases, AOSLO has revealed subclinical photoreceptor abnormalities that have evaded detection with clinical examination and/or OCT, suggesting that photoreceptor disruption may exist even with a normal-appearing OCT.15
AOSLO previously used to investigate outer-segment structure abnormalities following head and/or closed globe blunt ocular trauma has demonstrated persistent and variable manifestations of photoreceptor mosaic disruption in all patients studied.15–17 However, it is unknown if these photoreceptor disruptions change with time and if remnant photoreceptor structure remains in areas of the mosaic where significant disruption and variable waveguiding exist on confocal AOSLO. Recently a novel imaging technique, non-confocal, split-detector AOSLO, was developed which allows for visualisation of photoreceptor inner-segment structure independent of the photoreceptor’s ability to waveguide light.18 To better understand the pathogenesis of their visual sequelae, we imaged patients with visual complaints following head and/or ocular trauma, with several of these patients followed longitudinally. By using both confocal and non-confocal, split-detector AOSLO, we sought to better characterise macular inner-segment photoreceptor structure in these patients and to begin exploring the relationship between retained photoreceptor structure and visual prognosis.