Discussion
The in vitro phase demonstrated antimicrobial activity of both cyclodextrin-complexed and uncomplexed MGO Manuka Honey solutions against bacterial species commonly associated with blepharitis, following pretreatment with catalase. The neutralisation of hydrogen peroxide by catalase treatment indicates that the bioactivity is attributable to other constituents including MGO, which has previously been identified as a significant antimicrobial factor in Manuka honey.21 25 MGO is believed to exert its effects via inhibition of murein hydrolase which is involved in the breakdown of peptidoglycan during cellular division.26 It is conceivable that with less peptidoglycan,27 and thus less murein hydrolase, Gram-negative organisms may be less susceptible to the antimicrobial effects of MGO than Gram-positive bacteria.28 This was demonstrated by the stronger sensitivity of S. aureus and S. epidermidis towards MGO than P. aeruginosa in the current study, and is consistent with previous studies which also report discrepancies between the response to Gram-positive and Gram-negative organisms.20 29 30 Nevertheless, blepharitis is more commonly associated with overcolonisation of S. aureus and S. epidermidis,6 against which MGO Manuka Honey solutions exhibited greater activity. It is also acknowledged that laboratory-adapted bacterial strains, used in our in vitro testing, have the potential to behave differently from clinical strains.31
Cyclodextrin-complexed Manuka honey solutions were generally shown to have stronger antimicrobial effect than uncomplexed honey, with smaller relative AUCs being observed in cultures containing cyclodextrin-complexed Manuka honey than uncomplexed honey. The magnitude of this effect paralleled the concentration of MGO. These findings are consistent with the previously reported enhancement of the antibacterial properties of Manuka honey following complexation with cyclodextrin.20 This is thought to be attributable to the slowed and sustained release of active honey constituents, and thereby the maintenance of an inhibitory concentration of these factors for an extended time.20 Complexation to cyclodextrin has been shown to reduce the release rate of many hydrophobic drugs to sustain a therapeutic concentration.18 Furthermore, in agreement with previously reported findings,20 cyclodextrin, alone, exhibited some antibacterial activity in the current study. However, these effects were significantly lower than those displayed by cyclodextrin-complexed or uncomplexed Manuka honey regardless of MGO concentration. Nevertheless, this suggests that the enhanced antimicrobial activity in cyclodextrin-complexed honey may be attributable to a combination of the complexation reaction and synergistic effects.
A microemulsion similar to that developed and described here has previously been reported to undergo phase transition from a clear liquid to a semisolid liquid crystal upon reduction of the glycerol and/or Tween 80 content.32 As cyclodextrins are capable of forming complexes with many excipients including glycerol,33 and Tween 80,34 it is likely that cyclodextrins from MGO Manuka Honey complexed glycerol and/or PS 80 leading to a component ratio shift and thus phase transition. This complexation behaviour is also supported by the cell viability data with death of almost 90% of cells exposed to PS 80 (1:1 dilution) for 15 min while PS 80 incorporated into the final formulation, and thus complexed and less available to the environment, caused no significant cytotoxicity. It should be noted here that, while the tested exposure time of 15 min is short, any formulation components accidentally entering the eye would be washed away quickly by reflex tearing and rapid tear turnover thus concentrations tested here are unlikely ever to be reached. Overall, formulations were found suitable for eyelid application with no anticipated significant ocular adverse effects in the event of formulation components entering the eye across the lid margins.
The subsequent in vivo phase, evaluating the safety and tolerability of the MHME in rabbit eyes, showed that measurements of lipid layer grade, tear evaporation rate, tear film osmolarity, phenol red thread, fluorescein staining, conjunctival hyperaemia, corneal opacity and iris appearance grades, did not change following instillation of either diluted MGO MHME or saline control. Furthermore, there were no significant changes in these measurements during the 5-day period in both groups, and no differences between groups. This suggests that instillation of diluted MHME was not associated with tear film destabilisation, ocular surface irritation, inflammation or epithelial damage in the rabbit eye. Furthermore, the MHME formulation is intended to be used as a cream applied onto the periocular skin of closed eyelids. However, this mode of application was not possible in the rabbit model due to fur around the eyes, and thus direct ocular surface instillation of an MHME at 1:10 dilution in saline was used in the current study. The migration of periocular particles into the tear film can occur in human subjects due to the action of the muscles of Riolan,35 36 and the surface tension at the tear meniscus.37 However, it is unlikely for the concentrations that reach the tear film with periocular application in humans to exceed the levels directly instilled into the rabbit eyes in the current study. Nevertheless, despite the favourable findings of this animal study, future tolerability trials on human subjects are required to confirm the clinical safety of MHME.
Although the MGO MHME is designed for topical application to the periocular skin of closed eyelids in human patients, the potential for accidental instillation directly onto the ocular surface cannot be discounted. Such a situation was simulated in the in vivo phase through the direct ocular instillation of undiluted MHME in the rabbits, without the immediate aqueous flushing that would be recommended as standard in clinical use following accidental instillation. Although the conjunctival hyperaemia grade was elevated at 30 s following undiluted MHME instillation, levels returned to baseline within 10 min.
The results of the in vivo phase need to be interpreted cautiously in the context of the methodological limitations, which preclude the direct extrapolation of the findings to the clinical safety and tolerability in human patients. There are significant differences in the anatomy and physiology of the eyes of rabbits and humans. Nevertheless, the rabbit is one of the closest models of the human ocular surface and tear film, and preclinical animal studies are required prior to the conduct of clinical trials in human subjects.
Of note, cyclodextrin-complexed Manuka honey generally exhibited stronger in vitro antimicrobial effects than uncomplexed honey on bacteria commonly associated with blepharitis. In vivo safety and tolerability evaluation of MGO MHME on rabbit eyes did not result in significant immediate or cumulative adverse effects. These findings therefore support clinical safety and tolerability evaluation of MGO MHME in human subjects.