Autoregulation, a balancing act between supply and demanda,b

https://doi.org/10.3129/i08-056Get rights and content

Abstract

Regulation of blood flow is necessary to adapt to different conditions. Regulation of ocular blood flow (OBF) compensates for varying perfusion pressures (autoregulation), adapts to the retinal activity (neurovascular coupling), and keeps the back of the eye at constant temperature (thermoregulation). While all vessels are under the control of the vascular endothelial cells, the retinal vessels are additionally under the control of the neural and glial cells, and the choroidal vessels are influenced by the autonomic nervous system.The optic nerve head is additionally controlled by circulating hormones. If the regulation does not occur according to the needs of the tissue, it is referred to as vascular dysregulation. Such a dysregulation can be secondary in nature, as, for example, in multiple sclerosis, in which the high level of endothelin reduces OBF. Dysregulation, however, can also occur without any underlying disease and is characterized by an inborn tendency to respond differently to various stimuli, such as cold temperatures or mechanical or emotional stress. The constellation of these features is known as primary vascular dysregulation (PVD). Subjects with PVD have disturbed autoregulation leading to an unstable OBF. This instability, in turn, induces a repeated mild reperfusion injury. The resulting oxidative stress contributes to the pathogenesis of glaucomatous optic neuropathy.

Résumé

La régulation du débit sanguin est nécessaire pour l’adaptation aux différentes conditions. Celle du débit sanguin oculaire (DSO) contrebalance les variations de pression de la perfusion (autorégulation), permet l’adaptation aux activités de la rétine (couplage neurovasculaire) et maintient l’arrière de l’œil à une température constante (thermorégulation). Si tous les vaisseaux demeurent sous le contrôle des cellules endotheliales vasculaires, les vaisseaux de la rétine sont aussi contrôlés par les cellules neurales et gliales, et les vaisseaux choroïdiens sont influencés par le système nerveux autonome. La papille optique est aussi contrôlée par les hormones en circulation. Si la régulation ne se fait pas selon les besoins des tissus, on parle alors de dysrégulation vasculaire. Une telle dysrégulation peut être naturellement secondaire comme, par exemple, dans la sclérose en plaques où le taux élevé d’endothéline réduit le DSO. La dysrégulation peut cependant survenir sans maladie sous-jacente et se caractérise par une tendance innée à répondre différemment à divers stimulus comme les températures froides ou le stress mécanique ou émotif. La constellation de ces traits est connue sous le vocable de dysrégulation vasculaire primaire (DVP). Les sujets atteints de DVP ont une autorégulation perturbée entraînant l’instabilité du DSO. à son tour, cette instabilité induit à répétition de légères blessures de reperfusion. Le stress oxydatif qui en résulte contribue à la pathogenèse de la neuropathie optique glaucomateuse.

References (27)

  • W Kamphuis et al.

    Ischemic preconditioning alters the pattern of gene expression changes in response to full retinal ischemia

    Mol Vis

    (2007)
  • AY Abramov et al.

    Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation

    J Neurosci

    (2007)
  • D Gherghel et al.

    Is vascular regulation in the central retinal artery altered in persons with vasospasm?

    Arch Ophthalmol

    (1999)
  • Cited by (144)

    • The renin-angiotensin system in the eye

      2023, Angiotensin: From the Kidney to Coronavirus
    • Evaluation of peripapillary and subfoveal choroidal vascularity index in patients with multiple sclerosis

      2022, Photodiagnosis and Photodynamic Therapy
      Citation Excerpt :

      Various vascular disorganization mechanisms are involved in the physiopathological procedures in MS disease. Vasoactive molecules in the blood have a significant impact on the choroid since they could easily access the choroid via fenestrated capillaries [33]. It has been suggested that increased plasma levels of endothelin-1, which is a potent vasoconstrictor, could play a prominent role in the reduction of retrobulbar blood flow and hypoperfusion in MS patients [10,12].

    • Role of ocular blood flow in normal tension glaucoma

      2022, Advances in Ophthalmology Practice and Research
    View all citing articles on Scopus
    a

    Presented in part at the International Ocular Blood Flow Symposium in Toronto, Ont., October 13, 2007

    b

    This article has been peer-reviewed.

    View full text