Skip to main content
Log in

Retinal Arterial Hypertrophy: the New LVH?

  • Therapeutic Trials (G Mancia, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Prevention of target organ damage represents the El Dorado for clinicians who treat hypertension. Although many of the cardiovascular sequelae of chronic hypertension are due to large artery atherosclerosis, an equal number are due to small artery dysfunction. These microvascular complications include eye disease (retinopathy), kidney failure, diastolic dysfunction of the heart and small vessel brain disease leading to stroke syndromes, dementia and even depression. Examination of the retinal vasculature represents the only way to reliably derive information regarding small arteries responsible for these diverse pathologies. This review aims to summarise the rapidly accruing evidence indicating that easily observable abnormalities of retinal arteries reflect target organ damage elsewhere in the body of hypertensive patients. In tandem, we also present putative mechanisms by which hypertension and diabetes fundamentally change small artery structure and function and how these processes may lead to target organ damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest have been highlighted as: • Of importance •• Of major importance

  1. Henderson AD, Bruce BB, Newman NJ, Biousse V. Hypertension-related eye abnormalities and the risk of stroke. Rev. 2011;8(1–2):1–9.

    Google Scholar 

  2. Cheung CY-l, Ikram MK, Sabanayagam C, Wong TY. Retinal Microvasculature as a Model to Study the Manifestations of Hypertension. Hypertension. 2012;60(5):1094–103.

    Article  PubMed  CAS  Google Scholar 

  3. Wong TY, Mitchell P. Hypertensive Retinopathy. New England Journal of Medicine. 2004;351(22):2310–7.

    Article  PubMed  CAS  Google Scholar 

  4. Wong T, Mitchell P. The eye in hypertension. The Lancet. 2007;369(9559):425–35.

    Article  Google Scholar 

  5. Klein R, Klein BE, Moss SE. The relation of systemic hypertension to changes in the retinal vasculature: the Beaver Dam Eye Study. Transactions of the American Ophthalmological Society. 1997;95:329–48. discussion 48–50.

    PubMed  CAS  Google Scholar 

  6. Dimmitt SB, Eames SM, Gosling P, West JNW, Gibson JM, Littler WA. Usefulness of Ophthalmoscopy in Mild to Moderate Hypertension. The Lancet. 1989;333(8647):1103–6.

    Article  Google Scholar 

  7. Ojaimi E, Nguyen TT, Klein R, Islam FMA, Cotch MF, Klein BEK, et al. Retinopathy Signs in People without Diabetes: The Multi-Ethnic Study of Atherosclerosis. Ophthalmology. 2011;118(4):656–62.

    Article  PubMed  Google Scholar 

  8. Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Germano G, et al. 2007 ESH-ESC Practice Guidelines for the Management of Arterial Hypertension: ESH-ESC Task Force on the Management of Arterial Hypertension. J Hypertens. 2007;25(9):1751–62. Epub 2007/09/01.

    Article  PubMed  CAS  Google Scholar 

  9. Gunn M. On ophthalmoscopic evidence of general arterial disease. Trans Ophthalmol Soc UK. 1898;18:356–81.

    Google Scholar 

  10. Keith NM, Wagener HP, Barker NW. Some Different Types Of Essential Hypertension: Their Course And Prognosis. The American Journal of the Medical Sciences. 1939;197(3):332–43.

    Article  Google Scholar 

  11. Sharrett AR, Hubbard LD, Cooper LS, Sorlie PD, Brothers RJ, Nieto FJ, et al. Retinal arteriolar diameters and elevated blood pressure: the Atherosclerosis Risk in Communities Study. Am J Epidemiol. 1999;150(3):263–70. Epub 1999/08/03.

    Article  PubMed  CAS  Google Scholar 

  12. Wang S, Xu L, Jonas JB, Wong TY, Cui T, Li Y, et al. Major Eye Diseases and Risk Factors Associated with Systemic Hypertension in an Adult Chinese Population: The Beijing Eye Study. Clinics in Occupational and Environmental Medicine. 2009;116(12):2373–80.

    Google Scholar 

  13. Wong TY, Klein R, Couper DJ, Cooper LS, Shahar E, Hubbard LD, et al. Retinal microvascular abnormalities and incident stroke: the Atherosclerosis Risk in Communities Study. The Lancet. 2001;358(9288):1134–40.

    Article  CAS  Google Scholar 

  14. Wong TY, Shankar A, Klein R, Klein BE. Retinal vessel diameters and the incidence of gross proteinuria and renal insufficiency in people with type 1 diabetes. Diabetes. 2004;53(1):179–84. Epub 2003/12/25.

    Article  PubMed  CAS  Google Scholar 

  15. McGeechan K, Liew G, Macaskill P, Irwig L, Klein R, Klein BE, et al. Meta-analysis: retinal vessel caliber and risk for coronary heart disease. Ann Intern Med. 2009;151(6):404–13. Epub 2009/09/17.

    Article  PubMed  Google Scholar 

  16. McGeechan K, Liew G, Macaskill P, Irwig L, Klein R, Sharrett AR, et al. Risk prediction of coronary heart disease based on retinal vascular caliber (from the Atherosclerosis Risk In Communities [ARIC] Study). Am J Cardiol. 2008;102(1):58–63. Epub 2008/06/24.

    Article  PubMed  Google Scholar 

  17. Wong TY, Klein R, Nieto FJ, Klein BE, Sharrett AR, Meuer SM, et al. Retinal microvascular abnormalities and 10-year cardiovascular mortality: a population-based case–control study. Ophthalmology. 2003;110(5):933–40. Epub 2003/05/17.

    Article  PubMed  Google Scholar 

  18. Liew G, Wong TY, Mitchell P, Cheung N, Wang JJ. Retinopathy predicts coronary heart disease mortality. Heart. 2009;95(5):391–4. Epub 2008/08/14.

    Article  PubMed  CAS  Google Scholar 

  19. • Cheung CY, Tay WT, Mitchell P, Wang JJ, Hsu W, Lee ML, et al. Quantitative and qualitative retinal microvascular characteristics and blood pressure. J Hypertens. 2011;29(7):1380–91. Epub 2011/05/12. Large cross sectional study describing the correlation of retinal arterial caliber measured with retinal photographs to mean arterial blood pressure.

    Article  PubMed  CAS  Google Scholar 

  20. McGeechan K, Liew G, Macaskill P, Irwig L, Klein R, Klein BE, et al. Prediction of incident stroke events based on retinal vessel caliber: a systematic review and individual-participant meta-analysis. Am J Epidemiol. 2009;170(11):1323–32. Epub 2009/11/04.

    Article  PubMed  Google Scholar 

  21. Smith W, Wang JJ, Wong TY, Rochtchina E, Klein R, Leeder SR, et al. Retinal Arteriolar Narrowing Is Associated With 5-Year Incident Severe Hypertension: The Blue Mountains Eye Study. Hypertension. 2004;44(4):442–7.

    Article  PubMed  CAS  Google Scholar 

  22. Mitchell P, Cheung N, de Haseth K, Taylor B, Rochtchina E, Islam FM, et al. Blood pressure and retinal arteriolar narrowing in children. Hypertension. 2007;49(5):1156–62. Epub 2007/03/21.

    Article  PubMed  CAS  Google Scholar 

  23. Xing C, Klein BE, Klein R, Jun G, Lee KE, Iyengar SK. Genome-wide linkage study of retinal vessel diameters in the Beaver Dam Eye Study. Hypertension. 2006;47(4):797–802. Epub 2006/03/01.

    Article  PubMed  CAS  Google Scholar 

  24. Rizzoni D, De Ciuceis C, Porteri E, Paiardi S, Boari GE, Mortini P, et al. Altered structure of small cerebral arteries in patients with essential hypertension. J Hypertens. 2009;27(4):838–45. Epub 2009/03/21.

    Article  PubMed  CAS  Google Scholar 

  25. Tahvanainen A, Taurio J, Maki-Jouppi J, Koobi P, Mustonen J, Kahonen M, et al. Increased wall tension in response to vasoconstrictors in isolated mesenteric arterial rings from patients with high blood pressure. Basic Clin Pharmacol Toxicol. 2006;99(6):440–9. Epub 2006/12/16.

    Article  PubMed  CAS  Google Scholar 

  26. Jenkins JT, Boyle JJ, McKay IC, Richens D, McPhaden AR, Lindop GB. Vascular remodelling in intramyocardial resistance vessels in hypertensive human cardiac transplant recipients. Heart. 1997;77(4):353–6. Epub 1997/04/01.

    PubMed  CAS  Google Scholar 

  27. Wallis SJ, Firth J, Dunn WR. Pressure-induced myogenic responses in human isolated cerebral resistance arteries. Stroke. 1996;27(12):2287–90. discussion 91. Epub 1996/12/01.

    Article  PubMed  CAS  Google Scholar 

  28. Heagerty AM, Aalkjaer C, Bund SJ, Korsgaard N, Mulvany MJ. Small artery structure in hypertension. Dual processes of remodeling and growth. Hypertension. 1993;21(4):391–7. Epub 1993/04/01.

    Article  PubMed  CAS  Google Scholar 

  29. Korsgaard N, Aalkjaer C, Heagerty AM, Izzard AS, Mulvany MJ. Histology of subcutaneous small arteries from patients with essential hypertension. Hypertension. 1993;22(4):523–6. Epub 1993/10/01.

    Article  PubMed  CAS  Google Scholar 

  30. Rizzoni D, Porteri E, Castellano M, Bettoni G, Muiesan ML, Muiesan P, et al. Vascular hypertrophy and remodeling in secondary hypertension. Hypertension. 1996;28(5):785–90. Epub 1996/11/01.

    Article  PubMed  CAS  Google Scholar 

  31. Bakker EN, van der Meulen ET, van den Berg BM, Everts V, Spaan JA, VanBavel E. Inward remodeling follows chronic vasoconstriction in isolated resistance arteries. J Vasc Res. 2002;39(1):12–20. Epub 2002/02/15.

    Article  PubMed  CAS  Google Scholar 

  32. Osol G, Brekke JF, McElroy-Yaggy K, Gokina NI. Myogenic tone, reactivity, and forced dilatation: a three-phase model of in vitro arterial myogenic behavior. Am J Physiol Heart Circ Physiol. 2002;283(6):H2260–7. Epub 2002/10/22.

    PubMed  CAS  Google Scholar 

  33. Hill MA, Davis MJ, Meininger GA, Potocnik SJ, Murphy TV. Arteriolar myogenic signalling mechanisms: Implications for local vascular function. Clin Hemorheol Microcirc. 2006;34(1–2):67–79. Epub 2006/03/18.

    PubMed  Google Scholar 

  34. Bund SJ, West KP, Heagerty AM. Effects of protection from pressure on resistance artery morphology and reactivity in spontaneously hypertensive and Wistar-Kyoto rats. Circ Res. 1991;68(5):1230–40. Epub 1991/05/01.

    Article  PubMed  CAS  Google Scholar 

  35. Zacchigna L, Vecchione C, Notte A, Cordenonsi M, Dupont S, Maretto S, et al. Emilin1 links TGF-beta maturation to blood pressure homeostasis. Cell. 2006;124(5):929–42. Epub 2006/03/15.

    Article  PubMed  CAS  Google Scholar 

  36. Aalkjaer C, Heagerty AM, Petersen KK, Swales JD, Mulvany MJ. Evidence for increased media thickness, increased neuronal amine uptake, and depressed excitation--contraction coupling in isolated resistance vessels from essential hypertensives. Circ Res. 1987;61(2):181–6. Epub 1987/08/01.

    Article  PubMed  CAS  Google Scholar 

  37. Leenen FH, Yuan B, Tsoporis J, Lee RM. Arterial hypertrophy and pressor responsiveness during development of hypertension in spontaneously hypertensive rats. J Hypertens. 1994;12(1):23–32. Epub 1994/01/01.

    Article  PubMed  CAS  Google Scholar 

  38. Heagerty AM, Heerkens EH, Izzard AS. Small artery structure and function in hypertension. J Cell Mol Med. 2010;14(5):1037–43. Epub 2010/05/12.

    PubMed  Google Scholar 

  39. Khavandi K, Greenstein AS, Sonoyama K, Withers S, Price A, Malik RA, et al. Myogenic tone and small artery remodelling: insight into diabetic nephropathy. Nephrol Dial Transplant. 2009;24(2):361–9. Epub 2008/11/26.

    Article  PubMed  Google Scholar 

  40. Rizzoni D, Porteri E, Guefi D, Piccoli A, Castellano M, Pasini G, et al. Cellular hypertrophy in subcutaneous small arteries of patients with renovascular hypertension. Hypertension. 2000;35(4):931–5. Epub 2000/04/25.

    Article  PubMed  CAS  Google Scholar 

  41. Rizzoni D, Porteri E, Guelfi D, Muiesan ML, Valentini U, Cimino A, et al. Structural alterations in subcutaneous small arteries of normotensive and hypertensive patients with non-insulin-dependent diabetes mellitus. Circulation. 2001;103(9):1238–44. Epub 2001/03/10.

    Article  PubMed  CAS  Google Scholar 

  42. •• Greenstein AS, Price A, Sonoyama K, Paisley A, Khavandi K, Withers S, et al. Eutrophic remodeling of small arteries in type 1 diabetes mellitus is enabled by metabolic control: a 10-year follow-up study. Hypertension. 2009;54(1):134–41. Epub 2009/05/28. Follow up study demonstarting the potential to reverse malign hypertrophic small artery changes seen in hypertensive patients with type 1 diabetes mellitus through improved metabolic parameters, to a more favourable structrual profile of eutrophic remodeling.

    Article  PubMed  CAS  Google Scholar 

  43. De Ciuceis C, Porteri E, Rizzoni D, Rizzardi N, Paiardi S, Boari GE, et al. Structural alterations of subcutaneous small-resistance arteries may predict major cardiovascular events in patients with hypertension. Am J Hypertens. 2007;20(8):846–52. Epub 2007/08/07.

    Article  PubMed  Google Scholar 

  44. Mathiassen ON, Buus NH, Sihm I, Thybo NK, Morn B, Schroeder AP, et al. Small artery structure is an independent predictor of cardiovascular events in essential hypertension. J Hypertens. 2007;25(5):1021–6. Epub 2007/04/07.

    Article  PubMed  CAS  Google Scholar 

  45. Rizzoni D, Porteri E, Boari GE, De Ciuceis C, Sleiman I, Muiesan ML, et al. Prognostic significance of small-artery structure in hypertension. Circulation. 2003;108(18):2230–5. Epub 2003/10/15.

    Article  PubMed  Google Scholar 

  46. Heagerty AM. Predicting hypertension complications from small artery structure. J Hypertens. 2007;25(5):939–40. Epub 2007/04/07.

    Article  PubMed  CAS  Google Scholar 

  47. Izzard AS, Rizzoni D, Agabiti-Rosei E, Heagerty AM. Small artery structure and hypertension: adaptive changes and target organ damage. J Hypertens. 2005;23(2):247–50. Epub 2005/01/22.

    Article  PubMed  CAS  Google Scholar 

  48. Goode GK, Heagerty AM. In vitro responses of human peripheral small arteries in hypercholesterolemia and effects of therapy. Circulation. 1995;91(12):2898–903. Epub 1995/06/15.

    Article  PubMed  CAS  Google Scholar 

  49. Greenstein AS, Khavandi K, Withers SB, Sonoyama K, Clancy O, Jeziorska M, et al. Local inflammation and hypoxia abolish the protective anticontractile properties of perivascular fat in obese patients. Circulation. 2009;119(12):1661–70.

    Article  PubMed  CAS  Google Scholar 

  50. Schofield I, Malik R, Izzard A, Austin C, Heagerty A. Vascular structural and functional changes in type 2 diabetes mellitus: evidence for the roles of abnormal myogenic responsiveness and dyslipidemia. Circulation. 2002;106(24):3037–43. Epub 2002/12/11.

    Article  PubMed  Google Scholar 

  51. Izzard AS, Horton S, Heerkens EH, Shaw L, Heagerty AM. Middle cerebral artery structure and distensibility during developing and established phases of hypertension in the spontaneously hypertensive rat. J Hypertens. 2006;24(5):875–80. Epub 2006/04/14.

    Article  PubMed  CAS  Google Scholar 

  52. Izzard AS, Graham D, Burnham MP, Heerkens EH, Dominiczak AF, Heagerty AM. Myogenic and structural properties of cerebral arteries from the stroke-prone spontaneously hypertensive rat. Am J Physiol Heart Circ Physiol. 2003;285(4):H1489–94. Epub 2003/06/21.

    PubMed  CAS  Google Scholar 

  53. van Dokkum RP, Sun CW, Provoost AP, Jacob HJ, Roman RJ. Altered renal hemodynamics and impaired myogenic responses in the fawn-hooded rat. Am J Physiol. 1999;276(3 Pt 2):R855–63. Epub 1999/03/10.

    PubMed  Google Scholar 

  54. Capdeville M, Coutard M, Osborne-Pellegrin MJ. Spontaneous rupture of the internal elastic lamina in the rat: the manifestation of a genetically determined factor which may be linked to vascular fragility. Blood Vessels. 1989;26(4):197–212. Epub 1989/01/01.

    PubMed  CAS  Google Scholar 

  55. Wang X, Ajikobi DO, Salevsky FC, Cupples WA. Impaired myogenic autoregulation in kidneys of Brown Norway rats. Am J Physiol Renal Physiol. 2000;278(6):F962–9. Epub 2000/06/03.

    PubMed  CAS  Google Scholar 

  56. Verseput GH, Provoost AP, Braam BB, Weening JJ, Koomans HA. Angiotensin-converting enzyme inhibition in the prevention and treatment of chronic renal damage in the hypertensive fawn-hooded rat. J Am Soc Nephrol. 1997;8(2):249–59. Epub 1997/02/01.

    PubMed  CAS  Google Scholar 

  57. Delaney PJ, Burnham MP, Heagerty AM, Izzard AS. Impaired myogenic properties of cerebral arteries from the Brown Norway rat. J Hypertens. 2012;30(5):926–31. Epub 2012/03/24.

    Article  PubMed  CAS  Google Scholar 

  58. Schwartzkopff B, Motz W, Frenzel H, Vogt M, Knauer S, Strauer BE. Structural and functional alterations of the intramyocardial coronary arterioles in patients with arterial hypertension. Circulation. 1993;88(3):993–1003. Epub 1993/09/01.

    Article  PubMed  CAS  Google Scholar 

  59. Rizzoni D, Palombo C, Porteri E, Muiesan ML, Kozakova M, La Canna G, et al. Relationships between coronary flow vasodilator capacity and small artery remodelling in hypertensive patients. J Hypertens. 2003;21(3):625–31. Epub 2003/03/18.

    Article  PubMed  CAS  Google Scholar 

  60. Rizzoni D, Muiesan ML, Porteri E, Salvetti M, Castellano M, Bettoni G, et al. Relations between cardiac and vascular structure in patients with primary and secondary hypertension. J Am Coll Cardiol. 1998;32(4):985–92. Epub 1998/10/13.

    Article  PubMed  CAS  Google Scholar 

  61. Lynch FM, Izzard AS, Austin C, Prendergast B, Keenan D, Malik RA, et al. Effects of diabetes and hypertension on structure and distensibilty of human small coronary arteries. J Hypertens. 2012;30(2):384–9. Epub 2011/11/30.

    Article  PubMed  CAS  Google Scholar 

  62. Intengan HD, Schiffrin EL. Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fibrosis. Hypertension. 2001;38(3 Pt 2):581–7. Epub 2001/09/22.

    Article  PubMed  CAS  Google Scholar 

  63. •• Heerkens EH, Izzard AS, Heagerty AM. Integrins, vascular remodeling, and hypertension. Hypertension. 2007;49(1):1–4. Epub 2006/12/06. Review of current understanding of significance of small artery structural and functional changes, with summary of data on molecular mechanism contributing to remodeling, with a focus on extracellular matrix integrin cytoskeleton axis.

    Article  PubMed  CAS  Google Scholar 

  64. Intengan HD, Schiffrin EL. Structure and mechanical properties of resistance arteries in hypertension: role of adhesion molecules and extracellular matrix determinants. Hypertension. 2000;36(3):312–8. Epub 2000/09/16.

    Article  PubMed  CAS  Google Scholar 

  65. VanBavel E, Mulvany MJ. Integrins in hypertensive remodeling. Hypertension. 2006;47(2):147–8. Epub 2005/12/29.

    Article  PubMed  CAS  Google Scholar 

  66. Martinez-Lemus LA, Crow T, Davis MJ, Meininger GA. alphavbeta3- and alpha5beta1-integrin blockade inhibits myogenic constriction of skeletal muscle resistance arterioles. Am J Physiol Heart Circ Physiol. 2005;289(1):H322–9. Epub 2005/02/22.

    Article  PubMed  CAS  Google Scholar 

  67. Intengan HD, Thibault G, Li JS, Schiffrin EL. Resistance artery mechanics, structure, and extracellular components in spontaneously hypertensive rats: effects of angiotensin receptor antagonism and converting enzyme inhibition. Circulation. 1999;100(22):2267–75. Epub 1999/12/01.

    Article  PubMed  CAS  Google Scholar 

  68. Stephens RH, McElduff P, Heald AH, New JP, Worthington J, Ollier WE, et al. Polymorphisms in IGF-binding protein 1 are associated with impaired renal function in type 2 diabetes. Diabetes. 2005;54(12):3547–53. Epub 2005/11/25.

    Article  PubMed  CAS  Google Scholar 

  69. Gnudi L, Viberti G, Raij L, Rodriguez V, Burt D, Cortes P, et al. GLUT-1 overexpression: Link between hemodynamic and metabolic factors in glomerular injury? Hypertension. 2003;42(1):19–24. Epub 2003/05/29.

    Article  PubMed  CAS  Google Scholar 

  70. Heerkens EH, Shaw L, Ryding A, Brooker G, Mullins JJ, Austin C, et al. alphaV integrins are necessary for eutrophic inward remodeling of small arteries in hypertension. Hypertension. 2006;47(2):281–7. Epub 2005/12/29.

    Article  PubMed  CAS  Google Scholar 

  71. Thybo NK, Korsgaard N, Mulvany MJ. Morphology and function of mesenteric resistance arteries in transgenic rats with low-renin hypertension. J Hypertens. 1992;10(10):1191–6. Epub 1992/10/01.

    Article  PubMed  CAS  Google Scholar 

  72. Drummond HA, Jernigan NL, Grifoni SC. Sensing tension: epithelial sodium channel/acid-sensing ion channel proteins in cardiovascular homeostasis. Hypertension. 2008;51(5):1265–71. Epub 2008/04/02.

    Article  PubMed  CAS  Google Scholar 

  73. Jernigan NL, Drummond HA. Vascular ENaC proteins are required for renal myogenic constriction. Am J Physiol Renal Physiol. 2005;289(4):F891–901. Epub 2005/05/26.

    Article  PubMed  CAS  Google Scholar 

  74. Gannon KP, Vanlandingham LG, Jernigan NL, Grifoni SC, Hamilton G, Drummond HA. Impaired pressure-induced constriction in mouse middle cerebral arteries of ASIC2 knockout mice. Am J Physiol Heart Circ Physiol. 2008;294(4):H1793–803. Epub 2008/02/26.

    Article  PubMed  CAS  Google Scholar 

  75. Hughes AD, Martinez-Perez E, Jabbar AS, Hassan A, Witt NW, Mistry PD, et al. Quantification of topological changes in retinal vascular architecture in essential and malignant hypertension. J Hypertens. 2006;24(5):889–94. Epub 2006/04/14.

    Article  PubMed  CAS  Google Scholar 

  76. Harazny JM, Ritt M, Baleanu D, Ott C, Heckmann J, Schlaich MP, et al. Increased wall:lumen ratio of retinal arterioles in male patients with a history of a cerebrovascular event. Hypertension. 2007;50(4):623–9. Epub 2007/08/19.

    Article  PubMed  CAS  Google Scholar 

  77. •• Ritt M, Schmieder RE. Wall-to-lumen ratio of retinal arterioles as a tool to assess vascular changes. Hypertension. 2009;54(2):384–7. Epub 2009/05/20. Excellent review of novel retinal imaging technologies and information yelided on small artery structue and function, and potential prognostic relevance of data.

    Article  PubMed  CAS  Google Scholar 

  78. Harazny JM, Raff U, Welzenbach J, Ott C, Ritt M, Lehmann M, et al. New software analyses increase the reliability of measurements of retinal arterioles morphology by scanning laser Doppler flowmetry in humans. J Hypertens. 2011;29(4):777–82. Epub 2011/02/08.

    Article  PubMed  CAS  Google Scholar 

  79. •• Rizzoni D, Porteri E, Duse S, De Ciuceis C, Rosei CA, La Boria E, et al. Relationship between media-to-lumen ratio of subcutaneous small arteries and wall-to-lumen ratio of retinal arterioles evaluated noninvasively by scanning laser Doppler flowmetry. J Hypertens. 2012;30(6):1169–75. Epub 2012/04/17. Study from a world-class centre for resistance artery research, confirming that data acquired from SLDF is reproducible and correlates closely with in-vitro structrual measurements using validated myography techniques.

    Article  PubMed  CAS  Google Scholar 

  80. • Baleanu D, Ritt M, Harazny J, Heckmann J, Schmieder RE, Michelson G. Wall-to-lumen ratio of retinal arterioles and arteriole-to-venule ratio of retinal vessels in patients with cerebrovascular damage. Invest Ophthalmol Vis Sci. 2009;50(9):4351–9. Epub 2009/04/03. Cross sectional study showing the association between retinal artery wall structre as measured using SLDF and cerebrovascular damage.

    Article  PubMed  Google Scholar 

  81. Ritt M, Harazny JM, Ott C, Schlaich MP, Schneider MP, Michelson G, et al. Analysis of retinal arteriolar structure in never-treated patients with essential hypertension. J Hypertens. 2008;26(7):1427–34. Epub 2008/06/14.

    Article  PubMed  CAS  Google Scholar 

  82. • Ritt M, Harazny JM, Ott C, Schneider MP, Schlaich MP, Michelson G, et al. Wall-to-lumen ratio of retinal arterioles is related with urinary albumin excretion and altered vascular reactivity to infusion of the nitric oxide synthase inhibitor N-monomethyl-L-arginine. J Hypertens. 2009;27(11):2201–8. Epub 2009/07/25. Study providing evidence that retinal artery structural parameters measured using SLDF, correlate with increased urinart albumin excretion, and therefore potential early target organ damage to the kidney.

    Article  PubMed  CAS  Google Scholar 

  83. Bhargava M, Ikram MK, Wong TY. How does hypertension affect your eyes? J Hum Hypertens. 2012;26(2):71–83. doi:10.1038/jhh.2011.37. Epub Apr 21.

    Article  PubMed  CAS  Google Scholar 

  84. Schiffrin EL. Remodeling of resistance arteries in essential hypertension and effects of antihypertensive treatment. Am J Hypertens. 2004;17(12 Pt 1):1192–200. Epub 2004/12/21.

    Article  PubMed  CAS  Google Scholar 

  85. Agabiti-Rosei E, Heagerty AM, Rizzoni D. Effects of antihypertensive treatment on small artery remodelling. J Hypertens. 2009;27(6):1107–14. Epub 2009/03/19.

    Article  PubMed  CAS  Google Scholar 

  86. Thybo NK, Stephens N, Cooper A, Aalkjaer C, Heagerty AM, Mulvany MJ. Effect of antihypertensive treatment on small arteries of patients with previously untreated essential hypertension. Hypertension. 1995;25(4 Pt 1):474–81. Epub 1995/04/01.

    Article  PubMed  CAS  Google Scholar 

  87. Rizzoni D, Porteri E, Piccoli A, Castellano M, Bettoni G, Muiesan ML, et al. Effects of losartan and enalapril on small artery structure in hypertensive rats. Hypertension. 1998;32(2):305–10. Epub 1998/08/27.

    Article  PubMed  CAS  Google Scholar 

  88. Rigsby CS, Pollock DM, Dorrance AM. Spironolactone improves structure and increases tone in the cerebral vasculature of male spontaneously hypertensive stroke-prone rats. Microvasc Res. 2007;73(3):198–205. Epub 2007/01/26.

    Article  PubMed  CAS  Google Scholar 

  89. Malik RA, Schofield IJ, Izzard A, Austin C, Bermann G, Heagerty AM. Effects of angiotensin type-1 receptor antagonism on small artery function in patients with type 2 diabetes mellitus. Hypertension. 2005;45(2):264–9. Epub 2005/01/05.

    Article  PubMed  CAS  Google Scholar 

  90. Christensen KL, Mulvany MJ. Vasodilatation, not hypotension, improves resistance vessel design during treatment of essential hypertension: a literature survey. J Hypertens. 2001;19(6):1001–6. Epub 2001/06/14.

    Article  PubMed  CAS  Google Scholar 

  91. Rizzoni D, Porteri E, De Ciuceis C, Sleiman I, Rodella L, Rezzani R, et al. Effect of treatment with candesartan or enalapril on subcutaneous small artery structure in hypertensive patients with noninsulin-dependent diabetes mellitus. Hypertension. 2005;45(4):659–65. Epub 2005/02/23.

    Article  PubMed  CAS  Google Scholar 

  92. Vettoretti S, Ochodnicky P, Buikema H, Henning RH, Kluppel CA, de Zeeuw D, et al. Altered myogenic constriction and endothelium-derived hyperpolarizing factor-mediated relaxation in small mesenteric arteries of hypertensive subtotally nephrectomized rats. J Hypertens. 2006;24(11):2215–23. Epub 2006/10/21.

    Article  PubMed  CAS  Google Scholar 

  93. Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001;345(12):851–60. Epub 2001/09/22.

    Article  PubMed  CAS  Google Scholar 

  94. Yusuf S, Teo KK, Pogue J, Dyal L, Copland I, Schumacher H, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med. 2008;358(15):1547–59. Epub 2008/04/02.

    Article  PubMed  CAS  Google Scholar 

  95. Blum M, Pils C, Muller UA, Strobel J. The myogenic response of retinal arterioles in diabetic retinopathy. Ophthalmologe. 2006;103(3):209–13. Epub 2005/12/06. Messung der myogenen Antwort retinaler Arteriolen bei diabetischer Retinopathie.

    Article  PubMed  CAS  Google Scholar 

  96. Ito I, Jarajapu YP, Guberski DL, Grant MB, Knot HJ. Myogenic tone and reactivity of rat ophthalmic artery in acute exposure to high glucose and in a type II diabetic model. Invest Ophthalmol Vis Sci. 2006;47(2):683–92. Epub 2006/01/25.

    Article  PubMed  Google Scholar 

  97. Churchill PC, Churchill MC, Bidani AK, Griffin KA, Picken M, Pravenec M, et al. Genetic susceptibility to hypertension-induced renal damage in the rat. Evidence based on kidney-specific genome transfer. J Clin Invest. 1997;100(6):1373–82. Epub 1997/09/18.

    Article  PubMed  CAS  Google Scholar 

  98. Hayashi K, Epstein M, Loutzenhiser R, Forster H. Impaired myogenic responsiveness of the afferent arteriole in streptozotocin-induced diabetic rats: role of eicosanoid derangements. J Am Soc Nephrol. 1992;2(11):1578–86. Epub 1992/05/01.

    PubMed  CAS  Google Scholar 

  99. Azar S, Johnson MA, Iwai J, Bruno L, Tobian L. Single-nephron dynamics in "post-salt" rats with chronic hypertension. J Lab Clin Med. 1978;91(1):156–66. Epub 1978/01/01.

    PubMed  CAS  Google Scholar 

  100. Raij L, Azar S, Keane WF. Role of hypertension in progressive glomerular immune injury. Hypertension. 1985;7(3 Pt 1):398–404. Epub 1985/05/01.

    PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

K. Khavandi declares that he has no conflict of interest.

M. Arunakirinathan declares that she has no conflict of interest.

A.S. Greenstein declares that he has no conflict of interest.

A.M. Heagerty declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam S. Greenstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khavandi, K., Arunakirinathan, M., Greenstein, A.S. et al. Retinal Arterial Hypertrophy: the New LVH?. Curr Hypertens Rep 15, 244–252 (2013). https://doi.org/10.1007/s11906-013-0347-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-013-0347-2

Keywords

Navigation