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ABSTRACT
Purpose  To develop a Vision Transformer model to detect 
different stages of diabetic maculopathy (DM) based on 
optical coherence tomography (OCT) images.
Methods  After removing images with poor quality, a total 
of 3319 OCT images were extracted from the Eye Center 
of the Renmin Hospital of Wuhan University and randomly 
split the images into training and validation sets in a 7:3 
ratio. All macular cross-sectional scan OCT images were 
collected retrospectively from the eyes of DM patients from 
2016 to 2022. One of the OCT stages of DM, including 
early diabetic macular oedema (DME), advanced DME, 
severe DME and atrophic maculopathy, was labelled on the 
collected images, respectively. A deep learning (DL) model 
based on Vision Transformer was trained to detect four 
OCT grading of DM.
Results  The model proposed in our paper can provide 
an impressive detection performance. We achieved an 
accuracy of 82.00%, an F1 score of 83.11%, an area 
under the receiver operating characteristic curve (AUC) 
of 0.96. The AUC for the detection of four OCT grading 
(ie, early DME, advanced DME, severe DME and atrophic 
maculopathy) was 0.96, 0.95, 0.87 and 0.98, respectively, 
with an accuracy of 90.87%, 89.96%, 94.42% and 
95.13%, respectively, a precision of 88.46%, 80.31%, 
89.42% and 87.74%, respectively, a sensitivity of 87.03%, 
88.18%, 63.39% and 89.42%, respectively, a specificity of 
93.02%, 90.72%, 98.40% and 96.66%, respectively and 
an F1 score of 87.74%, 84.06%, 88.18% and 88.57%, 
respectively.
Conclusion  Our DL model based on Vision Transformer 
demonstrated a relatively high accuracy in the detection 
of OCT grading of DM, which can help with patients in 
a preliminary screening to identify groups with serious 
conditions. These patients need a further test for an 
accurate diagnosis, and a timely treatment to obtain a 
good visual prognosis. These results emphasised the 
potential of artificial intelligence in assisting clinicians in 
developing therapeutic strategies with DM in the future.

INTRODUCTION
Diabetic retinopathy (DR) is one of the most 
common complications of diabetes.1 At any 
time during the progression of DR, patients 
may develop diabetic macular oedema (DME), 

which is caused by fluid accumulation in the 
macula due to a breakdown of the blood–
retinal barrier.2 3 DME is the most common 
cause of visual impairment in people with 
diabetes, and its global prevalence is expected 
to increase from nearly 18.83 million in 2020 
to 28.61 million in 2045.4 Patients with DME 
can be at great risk of irreversible vision loss 
if not treated promptly.2 Early diagnosis and 
timely treatment can effectively protect and 
restore the vision of DR patients.5

Previously, based on the location of retinal 
thickening and hard exudates, DME was clas-
sified into involved central and non-involved 
central types.6 According to patterns of DME 
on optical coherence tomography (OCT) 
examination, DME can be divided into 
diffused retinal thickening (DRT), cystoid 
macular oedema (CME) and serous retinal 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Artificial intelligence (AI) has been used to detect dif-
ferent macular diseases based on optical coherence 
tomography (OCT) images. However, this new grad-
ing system for diabetic maculopathy (DM) has not 
yet been used in deep learning (DL) research, which 
may be able to predict the treatment outcome and 
visual prognosis of DM better in the future.

WHAT THIS STUDY ADDS
	⇒ Our DL model based on Vision Transformer demon-
strated a relatively high accuracy in the detection of 
OCT grading of DM, which can help with patients in 
a preliminary screening to identify groups with se-
rious conditions.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ Our model can help ophthalmologists to develop 
personalised treatment plans for DM patients. These 
results emphasise the potential of AI in reducing the 
necessary time of clinical diagnosis, assisting clini-
cal decision-making and guaranteeing the cure rate 
in the future.
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detachment (SRD).7 All these classifications only focus 
on the location and its relationship with the fovea of 
macular thickening, or the overall patterns on OCT, 
lacking the assessment of macular atrophy and failing 
to consider the alteration in subtle structure of different 
manifestations of DME, which cannot meet the needs of 
treatment.

In recent years, with the widespread application of 
spectral domain OCT (SD-OCT), more biomarkers have 
been identified in DME, which are of great significance 
for the treatment and prognosis.8–10 The location and size 
of intraretinal cysts (IRC) correlated with visual acuity at 
baseline in DME and the cysts of the inner nuclear layer 
were more sensitive to corticosteroid or anti-VEGF treat-
ment than the outer nuclear layer.11 12 Visual acuity was 
closely related to central photoreceptor damage and 
the percentage of ellipsoid zone (EZ) destruction, and 
whether the photoreceptor status was restored deter-
mined the final visual acuity.13 14 The greater the range 
of disorganisation of the inner retinal layers (DRIL) in 
DME eyes at baseline, the worse the prognosis of vision.15 
In 2019, an international panel of experts attempted to 
combine more OCT-related morphological features with 
central subfoveal thickness (CST) to elaborate a new 
grading system for diabetic maculopathy (DM) appli-
cable to clinical and scientific research.16 DM includes all 
the phenotypes of macular involvement in DR irrespec-
tive of the presence of macular thickening. According 
to foveal thickness, the size of the IRC, the EZ and/or 
external limiting membrane (ELM) status, and the pres-
ence of DRIL, DM is classified as early DME, advanced 
DME, severe DME and atrophic maculopathy. Therefore, 
this classification may be able to predict the treatment 
outcome and visual prognosis of DM better in the future.

Patients with DM often need to take regular OCT exam-
inations to record the occurrence and development of 
the disease. The increasing number of patients with DM 
makes it a significant burden for clinicians to manually 
determine the presence or progression of DM on OCT 
images.4 Artificial intelligence (AI) that can help with 
screening may reduce the burden on ophthalmologists. 
Intelligent systems have been developed for diagnosing 
and classifying DME based on OCT images.17 18 In these 
studies, AI was only used to detect different macular 
diseases and the overall morphology of DME, and this 
new grading system has not yet been used in research. In 
this study, we aimed to build a deep learning (DL)-based 
training AI system to automatically classify DM images 
based on the novel classification standard, in order to 
help ophthalmologists develop personalised treatment 
plans for patients with DM.

MATERIALS AND METHODS
Image dataset
In this study, all completely anonymous retinal OCT 
images were selected from retrospective cohorts of adult 
patients from the Eye Center of the Renmin Hospital of 
Wuhan University between 2016 and 2022. 4076 OCT 

images of DM patients centred at the fovea were extracted 
from an OCT device (Optovue RTVue, Optovue, 
Fremont, California, USA) for training and validating 
the DL model. After randomly splitting the dataset into 
training and validation sets in a 7:3 ratio, the training data 
and the validation data were completely independent of 
each other. In the model’s training and testing phases, we 
made no distinction between the patient’s left and right 
eyes. It was not appropriate or possible to involve patients 
or the public in the design, or conduct, or reporting, or 
dissemination plans of our research.

Grading of DM
Seven qualitative and quantitative characteristics of DM 
are considered and scored according to the grading 
system called TCED-HFV, including foveal thickness (T), 
intraretinal cyst (C), EZ and/or ELM status (E), presence 
of DRIL (D), number of hyper-reflective foci (H), subfo-
veal fluid (F), and vitreoretinal relationship (V).16 Based 
on the first four variables, namely T, C, E and D, disease 
can be classified into four distinct stages, that is, early 
DME, advanced DME, severe DME and atrophic macu-
lopathy (figure 1). Different stages reflect the severity of 
the disease.

Image labelling
Before training, all OCT images were graded into four 
stages by trained graders with increasing expertise for 
verification and correction of image labels. A trained 
grader (LC) excluded images with low image quality. 
These images were taken of improper positioning during 
image acquisition or scans with strong motion arte-
facts, causing misalignment and blurring of sections. 
Then, two retinal specialists (YS and HZ) independently 
labelled each image, and images with a clear consensus 
annotation between ophthalmologists were taken into 
the sample. Images with different grading opinions were 
adjudicated by a senior retinal expert (CC) with more 
than 20 years of experience and the final labels were also 
imported into the database.

Images preprocessing
The preprocessing part was used to enhance the effec-
tive area of OCT images, suppress background noise, 
increase the number of training samples and improve 
the generalisation ability and robustness of the model. 
We chose our segmentation method to simply extract the 
effective region of the OCT images and perform pixel-
level enhancement. On the one hand, this was to reduce 
the noise interference. On the other hand, we wanted to 
make the model focus more on the effective region of 
the images.

The background area occupied most of the OCT 
image and there was a certain amount of noise overall, 
which may affect model training. Therefore, we hoped 
to suppress image noise to make it easier for the network 
to focus on the effective area of the OCT image and 
converge faster.
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To this end, we proposed to use the Otsu method to 
binarise the image, and fuse the resulting binary image 
with the original image at a certain ratio. This enhanced 
the effective area of the image and suppressed back-
ground noise.

More specifically, first, according to the interclass 
variance of the histogram of the OCT image, a binary 
segmentation was performed to obtain a binary image, 
denoted as P. The original image was denoted as T. The 
dot product operation was performed on P and T and 
add up P and T to get the final result. The formula was 
as follows:

 

	﻿‍ Iprepro = (T · P) · α + T · (1 − α)‍�
The value of $\alpha$ is between 0 and 1, set manually.
Then, conventional data augmentation methods were 

used to enhance the preprocessed images. Specific 
measures will be introduced in the model validation 
section.

Model training
In the training part, guided by the idea of normalisation, 
we designed a classifier and loss function to alleviate the 
problem of network overconfidence and improve its 
robustness.

Considering that OCT images were prone to noise, 
we chose the Vision Transformer as the backbone to 
extract features from OCT images, which was more 
robust to noise compared with convolutional neural 
network (CNN), as the Vision Transformer can better 
mine global information through its self-attention mech-
anism and had less bias towards local texture features. 
The features extracted by the backbone were classified 
through our self-designed classifier. As there was a long-
tailed problem in the dataset, we redesigned the classifier 
and loss function using some normalisation techs. The 
specific implementation method was as follows:

1.	 Based on an unbiased linear layer, we calculated the 
logits using the weights of the classifier and the input 
feature vectors with L2-Norm.

2.	 We combined the CrossEntropy Loss and logits with 
L2-Norm, which will keep the magnitude of logits a 
constant during training, to create a new loss function.

Concretely, the formula of the logits calculated by clas-
sifier that we proposed was as follows:

	﻿‍
g = K

wTx
||w||||x||‍�

where $g$ is denoted as the logits output of the back-
bone, $w$ is the weight parameters of the classifier and x 
stands for the feature input of the classsifier, K is a hyper-
parameter.

And the new loss function can be defined as:

	﻿‍

L = −
n∑

i=1

yi log
e

g
||g||

∑k
j=1 e

gj

||g||
‍�

Where the temperature parameter $\tau$ controlls the 
magnitude of the logits and $y_i$ represents the label.

Model inference
In practice, the distribution of OCT images often varied 
between training and test data, potentially leading to a 
decrease in the model’s performance. To address this 
issue, we have introduced an adaptive mechanism that 
allowed the model to dynamically update its parameters 
based on test data, thereby enhancing both its perfor-
mance and generalisation ability. For each test sample, 
we performed multiple random data augmentation oper-
ations, such as rotation, cropping and flipping, to obtain 
diversified test samples and improve the robustness and 
generalisation ability of the model.

For each test sample x, a series of random enhance-
ment operations were performed m times to obtain a 
sample set $X=\{x_1,x_2,…,x_m\}$. Take this set as a batch 

Figure 1  Representative optical coherence tomography images. (A) Early diabetic macular oedema (DME). (B) Advanced 
DME. (C) Severe DME. (D) Atrophic maculopathy.
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and input into the model to obtain the output distribu-
tion $p(y|x)$. Here, every single $x \in X$ must predict 
a label $y\in Y$, but it was important to note that $y$ was 
not the ground truth. We hoped that the model could 
maintain relatively stable in the predictions of the same 
sample under numerous data augmentation operations, 
which meant an improvement of the model’s robustness. 
To achieve this goal, we took the entropy of the average 
output distribution of the model as the optimised goal. 
By minimising the entropy value, the parameters of the 
model are updated. Then we input the original sample x 
into the model and got the final result. Specifically, the 
formula for the optimisation objective was as follows:

	﻿‍
H = −

∑
y∈Y

p̂(y|x) log p̂(y|x)
‍�

Note that for every test sample x, the model’s parame-
ters that update in test time will not be saved.

Experiment
In order to verify the generalisation of our proposed 
schemes, we conducted experiments on the dataset 
constructed by ourselves.

First, the preprocessing method we proposed was 
applied to the OCT images with the $\alpha$ value set 
to 0.2 to obtain enhanced OCT images. Then, some 
conventional data augmentation methods were applied 
to these OCT images after they were resized to 224×224. 
Specifically, includes ‘RandomResizedCrop’, ‘Random-
HorizontalFlip’, ‘RandomVerticalFlip’, ‘GaussianBlur’ 
and ‘Normalise’. The model architecture we proposed 
using vision transformer will use these images and Adam 
optimizer to train. The loss function was the one we 
proposed above, with the temperature parameter set to 
1.0. The learning rate was set to 0.001, weight decay to 
0.0005, batch size to 128 and the K value of the classifier 
was set to 8.

Stochastic gradient descent (SGD) was a very common 
optimiser for model training in machine learning, which 
meant that it updated the model parameters by using a 
random subset of the data at each iteration. When it came 
to test time, we used SGD optimiser with 0.001 learning 
rate, perform 32 data augmentation operations on each 
sample, specifically including: ‘random rotation’, ‘histo-
gram equalisation’, ‘invert pixels’, ‘colour quantisation’, 
‘shear image along x-axis or y-axis’, ‘translate image 
along x-axis or y-axis’.

Model validation
Some metrics have been used to show model perfor-
mance. The correlation between the true labels and 
the predicted labels from our model was depicted as a 
confusion matrix, which was used to calculate the accu-
racy, precision, sensitivity, specificity and F1 score for 
image recognition. We also used the area under (AUC) 
the receiver operating characteristic (ROC) curve to 
evaluate the accuracy of the model in detecting the four 
stages. All the metrics mentioned above were calculated 
using TorchMetrics. We used TorchMetrics to generate 
the ROC curve for each stage of DM. This was done by 
taking the model’s predictions for all the validation data 
and the corresponding ground truth labels as input. This 
approach was also used for other metrics mentioned in 
the paper. For the generation of the ROC curve of the 
multiclass classifiers, TorchMetrics employed the One-vs-
Rest (OvR) strategy. This strategy treated each class as the 
positive class and all other classes as the negative class, 
calculating the ROC curve for each class separately. The 
cut-off values were determined dynamically by Torch-
Metrics based on all the validation data, varying for each 
category, eliminating the need for manual setting.

RESULTS
A total number of 4076 OCT images were collected. After 
removing images with severe artefacts causing misalign-
ment and blurring of sections or significant image 
resolution reductions, 3319 OCT images were used in 
this study, which were 1254 images of early DME, 991 
images of advanced DME, 672 images of severe DME and 
402 images of atrophic maculopathy. Among these, 70% 
of images were randomly selected as training dataset to 
establish our model, 30% of images were selected as vali-
dation dataset. The number of images for each stages in 
training and validation set is shown in table 1. The repre-
sentative enhanced OCT images are shown in online 
supplemental file 1.

On the validation dataset, we constructed, we achieved 
an accuracy of 82.00%, an F1 score of 83.11%, an AUC 
of 0.96. The confusion matrix of the classification results 
is shown in figure  2. And accuracy,precision, sensitivity 
and specificity for every stage are shown in table 2. AUC 
and F1 score for every stage are shown in online supple-
mental file 1. The AUC for the detection of early DME 
was 0.96, with an accuracy of 90.87%, a precision of 

Table 1  The distribution of images

DM stages No of total images No of training images No of validation images

Early DME 1254 884 370

Advanced DME 991 695 296

Severe DME 402 290 112

Atrophic maculopathy 672 464 208

DM, diabetic maculopathy; DME, diabetic macular oedema
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88.46%, a sensitivity of 87.03%, a specificity of 93.02% 
and an F1 score of 87.74%. The AUC for the detection 
of advanced DME was 0.95, with an accuracy of 89.96%, a 
precision of 80.31%, a sensitivity of 88.18%, a specificity 
of 90.72% and an F1 score of 84.06%. The AUC for the 
detection of severe DME was 0.87, with an accuracy of 
94.42%, a precision of 89.42%, a sensitivity of 63.39%, 
a specificity of 98.40% and an F1 score of 88.18%. The 
AUC for the detection of atrophic maculopathy was 0.98, 
with an accuracy of 95.13%, a precision of 87.74%, a 
sensitivity of 89.42%, a specificity of 96.66% and an F1 
score of 88.57%. The ROC curve of the classification 
results is shown in figure 3. The results showed that the 

method we proposed can effectively classify patients with 
DM into different stages.

DISCUSSION
In this study, we developed a DL model based on vision 
transformer for DM grading based on OCT-related 
morphological features. We achieved an accuracy of 
82.00%, an F1 score of 83.11% and an AUC of 0.96. Our 
research showed that the accuracy of our model in this 
novel grading system was promising, which can help with 
patients in a preliminary screening to identify groups 
with serious conditions. As this classification may be able 
to predict the treatment outcome and visual prognosis 
of DM better in the future, our model can help ophthal-
mologists to develop personalised treatment plans for 
patients with DM.

DM at four different stages reflects the severity of 
the disease. Early DME usually corresponds to a short 
duration of hyperglycaemic state.16 So most of the time 
patients can maintain a good vision if they can take good 
control of their blood glucose. EZ/ELM state is different 
between advanced and severe DME. In the former one, 
EZ/ELM may be damaged but still visible, and the layers 
of the inner retina are usually recognisable. In the latter 
one, the internal retinal layers and/or EZ/ELM are 
mostly destroyed and undetectable. These two groups 
of patients may have distinct differences in treatment 

Figure 2  Confusion matrixes of the model. DM, diabetic maculopathy; DME, diabetic macular oedema.

Table 2  Accuracy, precision, sensitivity and specificity of 
our model in validation dataset

DM stages
Accuracy 
(%)

Precision 
(%)

Sensitivity 
(%)

Specificity 
(%)

Early DME 90.87 88.46 87.03 93.02

Advanced 
DME

89.96 80.31 88.18 90.72

Severe DME 94.42 89.42 63.39 98.40

Atrophic 
maculopathy

95.13 87.74 89.42 96.66

DM, diabetic maculopathy; DME, diabetic macular oedema
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response and visual prognosis and should be distin-
guished.16 Patients with advanced DME should be treated 
promptly. Anti-VEGF treatment may prevent progression 
of the disease into next stage with ELM and/or EZ being 
recovered and CST decreasing to normal values. While 
once the disease progresses into severe DME, it may be 
difficult in resolution of oedema despite positive treat-
ment, and finally may inevitably develop into atrophy 
stage. Macular atrophy is characterised by complete EZ/
ELM destruction and DRIL, usually as a result of long-
term macular oedema, and has a poor visual outcome.16

Hence, this novel grading system can assist the ophthal-
mologists in predicting the prognosis of patients with 
DM in their clinical work, and personalised therapeutic 
strategies could be made according to the OCT grading. 
Especially in the former two stages, taking good control 
of blood glucose and timely treatment are significant to 
promote recovery and prevent them from progressing 
into the more severe stages. For these patients, early 
screening and long-term follow-up can maintain a better 
vision outcome. However, detection and grading of DM 

currently required expertise and are time-consuming. 
Thus, it is particularly beneficial and promising to 
develop an intelligent system for the DM grading based 
on this new system to assist the clinical decision-making 
processes in patients.

With the continuous development of DL technology, 
now we all have more opportunities to achieve automatic 
diagnosis and classification of diseases. Numerous studies 
have demonstrated the expert performance of DL tech-
nology in detecting DME. For instance, Alqudah19 
proposed a multiclassification model based on SD-OCT 
for four types of retinal diseases (age-related macular 
degeneration, choroidal neovascularisation, DME and 
drusen) as well as normal cases. The proposed CNN 
architecture with softmax classifier correctly identified 
99.17% of DME cases overall. Zhang et al20 proposed a 
multiscale DL model, which were divided into two parts: 
self-enhancement model and disease detection model, 
with achieving 94.5% accuracy in identifying DME. 
Meanwhile, they proved that this model provided a better 
ability to recognise low-quality medical images. Wu et al21 

Figure 3  ROC curve analysis results of our model. DME, diabetic macular oedema; ROC, receiver operating characteristic.
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trained a DL model using Visual Geometry Group 16 
(VGG16) network as the backbone to detect three OCT 
morphologies of DME, including DRT, CME and SRD. 
The accuracy was 93.0%, 95.1% and 98.8%, respectively. 
All the above studies indicated that DL model had good 
feasibility and application prospects in diagnosing DME. 
However, there is still a lack of DL model for automatic 
detection for this OCT-based grading of DM. Meanwhile, 
it should be noted that most of the above studies were 
based on CNN. The advantage of CNN is that it can 
extract image features well, which has been verified by 
a large number of scholars. However, there is still little 
research on Visual Transformer, which has better classifi-
cation capabilities than CNN to solve image classification 
problems.22

In current study, we trained a DL model using Vision 
Transformer as the backbone to detect this novel grading 
in OCT images. Vision Transformer proposed in 2020 is a 
new image classification model, which is considered to be 
the best image classification model at present, showing 
better performance than traditional CNN model.22 
Vision Transformer is not dependent on any CNN and 
is completely based on transformer structure designed 
with different feature extraction methods from CNN.23 
Research has proved the recognition ability of Vision 
Transformer for OCT images is stronger than CNN models 
and traditional machine learning algorithms.23 In the 
accuracy comparison of the same test set between Vision 
Transformer and four CNN models: VGG16, Resnet50, 
Densenet121 and EfficentNet, Vision Transformer has 
the highest classification accuracy of 99.69%. Meanwhile, 
both VGG16 and Vision Transformer are faster than 
other CNN models in the recognition speed of a single 
image.23 Although our result was slightly less impressive 
than the previous studies using other DL architectures 
to detect DME based on OCT images and the detection 
of the OCT patterns. It can be more complicated and 
challenging than distinguishing DME from other retinal 
diseases or simply detecting the overall patterns of DME, 
with less obvious differences in characteristics and subtle 
lesions between different OCT grading.

To our knowledge, this is the first article to detect the 
severity of DM according to the novel classification stan-
dard based on OCT images by DL and the first article 
to use Vision Transformer to detect DM. As mentioned 
above, this classification may be able to predict the treat-
ment outcome and visual prognosis of DM better in 
the future and help ophthalmologists develop precise 
treatment plans for patients. And as the Vision Trans-
former can better mine global information through its 
self-attention mechanism and has less bias towards local 
texture features, it is more robust to noise compared 
with CNN commonly used in past studies. So our 
model combined with these advantages is very prom-
ising for detecting OCT images of DM or other retinal 
diseases. Our model had a slightly lower performance in 
predicting severe DME. Possibly because there were fewer 
images compared with other stages, and patients almost 

always had poor vision after progressing into this stage, 
resulting in worsen image quality. However, our model 
can help with patients in a preliminary screening to iden-
tify groups with serious conditions. These patients need a 
further test for an accurate diagnosis, and a timely treat-
ment to prevent further deterioration in time. Overall, 
the result achieved by our DL model was promising and 
encouraging.

Although our model showed great potential, there are 
still several limitations in the study. First, OCT images 
only obtained from the Optovue RTVue imaging system 
in our study. The model needs to be further validated 
by images from different OCT equipment. Second, We 
only perform the classification training in this model. 
In the future, studies can train models to predict treat-
ment outcomes based on this new grading system. Finally, 
type of data we used only included images from one eye 
centre. More OCT images from other multicentre trials 
in the future can be used to improve our model.

In conclusion, our DL model based on Vision Trans-
former demonstrated a relatively high accuracy in the 
detection of the different OCT-based stages of DM. This 
DM grading model can reduce the burden on clinical 
ophthalmologists and provide a reference in making 
personalised therapeutic strategies. These results empha-
sise the potential of AI in reducing the necessary time of 
clinical diagnosis, assisting clinical decision-making and 
guaranteeing the cure rate in the future.
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