
Sarao V, et al. BMJ Open Ophth 2023;8:e001411. doi:10.1136/bmjophth-2023-001411 1

Original research

Explainable artificial intelligence model 
for the detection of geographic atrophy 
using colour retinal photographs

Valentina Sarao,1,2 Daniele Veritti,1 Axel De Nardin,3 Micaela Misciagna,1 
Gianluca Foresti,3 Paolo Lanzetta    1,2

To cite: Sarao V, Veritti D, 
De Nardin A, et al.  Explainable 
artificial intelligence 
model for the detection of 
geographic atrophy using 
colour retinal photographs. 
BMJ Open Ophthalmology 
2023;8:e001411. doi:10.1136/
bmjophth-2023-001411

 ► Additional supplemental 
material is published online 
only. To view, please visit the 
journal online (http:// dx. doi. 
org/ 10. 1136/ bmjophth- 2023- 
001411).

Received 21 July 2023
Accepted 22 November 2023

1Department of Medicine- 
Ophthalmology, University of 
Udine, Udine, Italy
2Istituto Europeo di 
Microchirurgia Oculare (IEMO), 
Udine, Italy
3Department of Mathematics, 
Computer Science and Physics, 
University of Udine, Udine, Italy

Correspondence to
Professor Paolo Lanzetta;  paolo. 
lanzetta@ uniud. it

© Author(s) (or their 
employer(s)) 2023. Re- use 
permitted under CC BY- NC. No 
commercial re- use. See rights 
and permissions. Published by 
BMJ.

ABSTRACT
Objective To develop and validate an explainable 
artificial intelligence (AI) model for detecting geographic 
atrophy (GA) via colour retinal photographs.
Methods and analysis We conducted a prospective 
study where colour fundus images were collected from 
healthy individuals and patients with retinal diseases 
using an automated imaging system. All images were 
categorised into three classes: healthy, GA and other retinal 
diseases, by two experienced retinologists. Simultaneously, 
an explainable learning model using class activation 
mapping techniques categorised each image into one of 
the three classes. The AI system’s performance was then 
compared with manual evaluations.
Results A total of 540 colour retinal photographs were 
collected. Data was divided such that 300 images from 
each class trained the AI model, 120 for validation and 
120 for performance testing. In distinguishing between GA 
and healthy eyes, the model demonstrated a sensitivity 
of 100%, specificity of 97.5% and an overall diagnostic 
accuracy of 98.4%. Performance metrics like area under 
the receiver operating characteristic (AUC- ROC, 0.988) and 
the precision- recall (AUC- PR, 0.952) curves reinforced the 
model’s robust achievement. When differentiating GA from 
other retinal conditions, the model preserved a diagnostic 
accuracy of 96.8%, a precision of 90.9% and a recall of 
100%, leading to an F1- score of 0.952. The AUC- ROC and 
AUC- PR scores were 0.975 and 0.909, respectively.
Conclusions Our explainable AI model exhibits excellent 
performance in detecting GA using colour retinal images. 
With its high sensitivity, specificity and overall diagnostic 
accuracy, the AI model stands as a powerful tool for the 
automated diagnosis of GA.

INTRODUCTION
Geographic atrophy (GA), an advanced 
stage of age- related macular degeneration, is 
a significant global health concern, being a 
leading cause of legal blindness. The condition 
affects approximately 5 million individuals, 
and projections suggest that this number 
could rise to 10 million cases by 2040.1 2 The 
challenge in managing GA lies in its poorly 
understood aetiology and pathogenesis. GA 
is characterised by the progressive death of 
retinal pigment epithelium (RPE) and photo-
receptor cells, as well as choriocapillaris loss. 

These alterations result in clearly delineated 
regions observable on retinal imaging and, if 
the central foveal area is implicated, they can 
result in significant vision loss.3 4

The recent approval of pegcetacoplan injec-
tion (SYFOVRE, Apellis Pharmaceuticals), an 
antagonist of C3 complement, has opened 
new avenues for GA therapy. By targeting 
the complement system, this treatment slows 
disease progression.5 6 This therapeutic 
breakthrough underscores the critical need 
for early diagnosis and regular monitoring 
of patients with GA to maximise the benefits 
of such treatments. To facilitate accurate and 

WHAT IS ALREADY KANOWN ON THIS TOPIC
 ⇒ Geographic atrophy (GA) is expected to increase in 
prevalence in the upcoming years. Prompt detection 
and monitoring of GA are crucial to optimising treat-
ment benefits and minimising vision loss. Colour 
fundus photography (CFP) is a widely accessible 
and affordable method for GA screening and surveil-
lance. Artificial intelligence (AI) shows potential for 
automating GA diagnosis via retinal image analysis, 
but previous AI models that used CFP suffered from 
limited sensitivity and lack of explainability.

WHAT THIS STUDY ADDS
 ⇒ This study introduces an AI model that is both highly 
accurate and explainable for detecting GA using CFP 
images. The model surpasses previous CFP- based 
AI methods with a sensitivity and specificity of over 
97%. Class activation mapping techniques are used, 
which visually explain the AI model’s decision- 
making process, enhancing transparency.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

 ⇒ The explainable AI model offers automated GA 
screening using readily accessible CFP imaging. 
Due to its high performance and explainability, the 
model can support clinical validation and promote 
the adoption of AI for GA diagnosis. Through optimis-
ing early GA detection, this AI method can increase 
patient access to innovative treatments, potentially 
preserving vision.
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timely detection of GA, the use of advanced imaging tech-
niques, such as optical coherence tomography (OCT), 
fundus autofluorescence (FAF) and colour fundus 
photography (CFP), is crucial. These imaging modalities 
offer detailed information on retinal structure and func-
tion, providing in- depth insights that enable healthcare 
professionals to identify GA and monitor its progres-
sion more effectively. In CFP, GA is depicted as a sharply 
defined, typically circular area displaying either partial or 
complete depigmentation of the RPE, often revealing the 
large choroidal blood vessels underneath. FAF amplifies 
the accuracy in pinpointing GA lesions and their bound-
aries due to the notable contrast between atrophic and 
non- atrophic regions, aiding in a more precise outlining 
and segmentation of GA lesions. OCT, as a three- 
dimensional imaging technique, offers advantages over 
two- dimensional methods (CFP and FAF), facilitating 
a thorough examination of atrophy and a quantitative 
evaluation of the involvement of specific retinal layers. 
It plays a pivotal role in identifying complete RPE and 
outer retinal atrophy, characterised by a hypertransmis-
sive zone exceeding 250 µm, RPE disruption over 250 
µm, photoreceptor degeneration, and absence of signs 
of RPE tears.7–11

The rapid progress in artificial intelligence (AI) tech-
nology has sparked growing interest in its application 
for prompt diagnosis and management of ophthalmic 
diseases, including GA screening and monitoring. AI 
algorithms have the capacity to analyse vast quantities 
of data from various imaging modalities, enabling the 
detection of subtle retinal changes that may be over-
looked by human observers.12 By learning patterns 
and features of GA from extensive image databases, AI 
models can apply this knowledge to new images for auto-
mated GA diagnosis.13 However, while deep learning 
models employing FAF and OCT have shown remarkable 

performance in identifying GA when compared with 
CFP, their practicality and availability in various health-
care settings remain limited.14–16 In contrast, CFP stands 
out as a more widespread, accessible and cost- effective 
technique for GA screening and monitoring. CFP is 
a simpler method that captures images of the retina 
using a fundus camera, which is generally more afford-
able and portable than FAF and OCT equipment. This 
makes CFP a more viable option for healthcare facili-
ties with limited resources or those located in remote 
areas. Moreover, the operation of CFP typically requires 
less specialised training than FAF and OCT, making it 
more accessible to a broader range of healthcare profes-
sionals. As a result, CFP can be more easily integrated 
into GA screening programmes, ensuring that a larger 
population has access to early detection and monitoring 
services.17 18

The development of explainable AI (XAI) algorithms 
is essential for ensuring the reliability and safety of 
medical decision- making processes, as they allow inter-
pretation and explanation of AI decisions. By offering 
a transparent understanding of the decision- making 
process, XAI can foster trust between patients and health-
care providers, particularly in fields like ophthalmology, 
where early detection and treatment of eye diseases such 
as GA are paramount. XAI algorithms can analyse retinal 
images to identify disease- specific features and patterns, 
while providing a clear explanation of the diagnostic 
process, which not only improves diagnostic accuracy but 
also streamlines decision- making, enabling faster and 
more efficient treatment.19–21

Given the importance of such advancements, our study 
aimed to develop an XAI model that can accurately and 
reliably identify GA from colour fundus images. This 
model is designed to provide a cost- effective, accessible 
and explainable tool for early GA detection.

Figure 1 Explainable learning architecture. ReLU, rectified linear unit.
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MATERIALS AND METHODS
Study population
Participants in this prospective study were recruited from 
individuals attending their regular yearly appointments at 
the Istituto Europeo di Microchirurgia Oculare (IEMO) 
in Udine, Italy. Eligible individuals were invited to join 
the research project. To be included in the study, patients 
were required to fulfil the following criteria: a minimum 
age of 18 years and a spherical equivalent ranging from −6 
to +6 dioptres. Informed consent was obtained from each 
participant in written form prior to their enrolment in 
the study. All procedures were conducted in accordance 
with the Declaration of Helsinki and were approved by 
the IEMO review board.

Imaging collection
Each patient underwent retinal imaging using a fully 
automated, white LED confocal scanner (Eidon, 
CenterVue Spa, a company of iCare Finland Oy; Vantaa, 
Finland). This device employed a slit confocal tech-
nique, capturing 60 degree, 14 megapixel colour retinal 
images automatically through a non- mydriatic pupil 
using a broad- spectrum white LED (440–650 nm) as light 
source. Colour fundus images, centred on the foveal 
midpoint, were acquired for both eyes of each partici-
pant under their natural pupil size. A single image was 
captured for each eye of every participant involved in 
the study. A technician obtained the images, ensuring 
they were of gradable quality. Images of each eye that 
could not be properly identified, such as those that were 
blurred or defocused due to severe cataracts or keratitis, 
were excluded from further analysis. All fundus images 
were extracted as JPG files. To ensure privacy and confi-
dentiality, all fundus photographs were subsequently 
anonymised and then uploaded to the AI system for 
further analysis and evaluation.

Imaging processing
Reference standards were established by randomly allo-
cating each image to two retinal specialists (VS and 
DV) with 5–10 years of post- certification experience in 
a tertiary hospital. The image labelling was considered 
finalised only after both experts reached a consensus; if 
agreement could not be achieved, a third expert (PL) 

with over 10 years of post- certification experience in a 
tertiary hospital made the final decision. Each image 
was classified into one of three categories: healthy eye 
(category 1), eyes with GA (category 2) and eyes with any 
retinal conditions other than GA (category 3).

Explainable learning architecture
The proposed approach incorporates a framework 
consisting of two principal elements: (1) a feature 
extractor for classification purposes and (2) a class acti-
vation map (CAM) module employed to elucidate the 
interpreted outcomes (figure 1).

The feature extraction process relies on a Deep 
Convolutional Neural Network (CNN), specifically, the 
Efficientnet_b2 model, renowned for its high efficiency 
and compact design, pretrained on the substantial 
ImageNet data set. This CNN was employed to deduce a 
compact array of representative, low- level features from 
the input images, subsequently used for image classifica-
tion. As the task at hand involves ophthalmological image 
classification, we strategically removed the final few 
layers of the network. We retained only the first six and 
five convolutional blocks for settings with two and three 
classes, respectively. This practice is customary when 
transferring knowledge from one domain to another, as 
the deeper the layers in a neural network architecture, 
the more domain- specific the extracted features become, 
thereby complicating their effective application in a new 
domain.

The second component of the proposed framework 
is the GradCAM, a CAM module. This module lever-
ages the spatial information conserved through the 
convolutional layers of the feature extraction network to 
generate a heatmap, emphasising the regions of the orig-
inal image that significantly contributed to predicting the 
output class. The heatmap generation process involves 
selecting a convolutional layer from the feature extractor 
(generally the final one, as it optimally balances high- 
level semantics and detailed spatial information) and 
performing a weighted average of the produced feature 
maps. GradCAM’s distinctive characteristic lies in how 
this average is calculated—the weights are based on the 
gradients of each feature map.

Table 1 Demographic patients’ characteristics
Total eyes Training set Validation set Testing set

Category 1, n 180 100 40 40

Category 2, n 180 100 40 40

Category 3, n 180 100 40 40

Age (mean±SD), years 66.9±5.7 65.6±4.2 68.5±5.9 66.8±6.1

Caucasian, % 100 100 100 100

Female,% 54 56 53 52

Phakic,% 59 60 63 55

Category 1: healthy eyes; category 2: eyes with geographic atrophy; category 3: eyes with retinal diseases other than geographic atrophy.
n, number.
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In our study, each image was randomly examined 
and then assigned to one of three categories by the 
explainable learning model reliant on CAM techniques, 
developed by the Department of Mathematics, Computer 
Science and Physics at the University of Udine.

Training, validation and testing data
The training, validation and testing data sets were 
created by randomly splitting the total data set into three 
parts. The training data set contained 60% of the total 
images, the validation data set contained 20% and the 
testing data set also contained 20%. This split was chosen 
to ensure that the model had a sufficient amount of data 
for learning, while also allowing for robust validation and 
testing. To prevent overfitting, we employed two regular-
isation techniques—early stopping and dropout. Early 
stopping was implemented by monitoring the validation 
loss during training and halting training if the validation 
loss did not improve after 20 consecutive epochs. In addi-
tion, we applied a dropout layer with a rate of 90%.

Performance metrics and statistical analysis
The entire test set was evaluated for accuracy, precision 
and recall in detecting the presence of GA. Additionally, 
key performance metrics such as sensitivity, specificity 
and F1 score were also calculated. We assessed the perfor-
mance of our algorithm for both two- class (healthy eyes 
and eyes with GA) and three- class distinctions (eyes with 
GA, healthy eyes and eyes with retinal diseases other than 
GA).

Accuracy serves as a measure of the system’s proficiency 
in delivering correct predictions, while precision assesses 
the ability of the system to accurately classify positive 
cases. Recall, on the other hand, evaluates the system’s 
competence in recognising all instances of positive cases. 
In the context of medical applications, particularly in 
ocular disease screening, higher values in these metrics 
signify superior performance of the software.

The performance of the AI system was evaluated using 
key statistical measures—specifically the receiver oper-
ating characteristic (ROC) curve and the precision- recall 
(PR) curve. These analyses serve as robust methodolo-
gies to assess the prediction accuracy and the balance 
between sensitivity and specificity.

The proficiency of our deep learning algorithms in 
discerning GA was determined by scrutinising the area 
under the ROC (AUC- ROC) and PR (AUC- PR) curves. 
These evaluation metrics provide a comprehensive 
perspective on the effectiveness and accuracy of our 
computational approach in detecting GA. The AUC- PR 
curve is presented as the average precision value. Perfect 
agreement with the gold standard (human grading) 
would be indicated by area under the curve equal to 1. 
The closer the curve converges towards the top right- 
hand corner, the more accurate the AI- based system is. 
Comparisons between AUC- ROCs and AUC- PR were 
made by using the method devised by DeLong test.22 
Statistical analyses were performed using MedCalc, 

V.15.0 (MedCalc Software, Ostend, Belgium) and SPSS 
statistical package, V.25 (IBM Corp, Armonk, New York, 
USA).

RESULTS
A total of 540 colour retinal photographs were collected 
and incorporated into the study, representing 540 eyes 
divided into three categories: 180 healthy eyes, 180 eyes 
with GA and 180 eyes with retinal diseases other than 
GA. For each category, 100 images were designated for 
training the learning model, 40 for validation and 40 for 
performance testing following the training phase. Among 
the 180 fundus photographs depicting retinal diseases 
other than GA, the diagnoses included retinal vascular 
occlusions (n=18), epiretinal membranes (n=33), central 
serous chorioretinopathy (n=28), diabetic retinopathy 
(n=47) and choroidal neovascularisation (n=54). Further 
demographic characteristics of the population can be 
found in table 1.

The performance metrics for detecting the presence 
of GA among the entire test set are detailed in table 2 
and figure 2. Confusion matrices illustrating our model’s 
performance are presented in online supplemental table 
1.

In the identification of GA within the two categories 
of interest, our model demonstrated a sensitivity of 
100% (95% CI: 83.2% to 100%) and specificity of 97.5% 
(95% CI: 86.8% to 99.9%). Further, the model showed 
a diagnostic accuracy of 98.4%, complemented by an 
AUC- ROC of 0.988 (95% CI: 0.918 to 1). The F1 score, 
measuring the model’s accuracy, was calculated at 0.976. 
Moreover, the AUC- PR presented an average precision of 
0.952 (95% CI: 0.719 to 0.994). Additionally, our model 
demonstrated a diagnostic accuracy of 96.8% in identi-
fying GA among the three categories within the entire 
data set. The performance metrics of the model were 
robust, with an accuracy of 96.8%, precision of 90.9% 
and recall of 100%, yielding an F1- score of 0.952. The 
model reported a sensitivity of 100% (95% CI: 83.2% 
to 100%), and a specificity of 95% (95% CI: 83.1% to 
99.4%). The AUC- ROC was 0.975 (95% CI: 0.897 to 
0.998), and the AUC- PR reached an average precision of 
0.909 (95% CI: 0.685 to 0.979), further supporting the 
model’s diagnostic capabilities. The difference between 
the two AUC- ROC was 0.0125 (95% CI: −0.0120 to 0.0370; 
p=0.3173) and between the two AUC- PR was 0.04329 
(p=0.4232). Training was halted due to early stopping 
based on the validation loss plateauing. The gap between 

Table 2 Performance metrics of explainable artificial 
intelligence model

Accuracy Precision Recall F1- score

Two classes 0.984 0.952 1 0.976
Three classes 0.968 0.909 1 0.952

Two classes: healthy, geographic atrophy; three classes: healthy, 
geographic atrophy and other retinal diseases.

 on A
pril 27, 2024 by guest. P

rotected by copyright.
http://bm

jophth.bm
j.com

/
B

M
J O

pen O
phth: first published as 10.1136/bm

jophth-2023-001411 on 6 D
ecem

ber 2023. D
ow

nloaded from
 

https://dx.doi.org/10.1136/bmjophth-2023-001411
https://dx.doi.org/10.1136/bmjophth-2023-001411
http://bmjophth.bmj.com/


5Sarao V, et al. BMJ Open Ophth 2023;8:e001411. doi:10.1136/bmjophth-2023-001411

Open access

training and validation loss indicated overfitting was 
beginning to occur. However, the early stopping criteria 
successfully terminated training to prevent further over-
fitting, as evidenced by the model’s strong performance 
on the independent test set. Figure 3 presents examples 

of the CAM visualising the prediction process executed 
by the trained model. As illustrated, it was observed that 
the CAM for each test data demonstrated marked activa-
tion in the posterior pole particularly in retinal images 
of category 2, which corresponds to those exhibiting GA.

DISCUSSION
In the wake of pegcetacoplan’s recent approval for GA 
treatment and ongoing investigations into novel thera-
peutic strategies, the significance of early GA detection 
has become markedly clear.5 6 Early detection and timely 
intervention are crucial in preserving visual function and 
enhancing the quality of life for those affected by GA. As 
the need for effective GA screening escalates, it is worth 
noting that current methodologies such as FAF and OCT 
exhibit commendable efficacy in detecting GA.14 FAF, in 
particular, provides a more detailed depiction of GA as it 
captures lesions and hyperfluorescent regions distinctly, 
enabling a superior visual representation of the retina 
in patients with GA. The pronounced contrast between 
atrophic and non- atrophic regions in FAF images allows 
for a more precise delineation and segmentation of GA 
lesions compared with CFP images, boosting the iden-
tification accuracy and reproducibility for both human 
and AI algorithms.9 10 23 Ramsey and colleagues’ study 
corroborates this, as they reported superior accuracy 
(±SD) with FAF images (0.75±0.16) compared with CFP 
images (0.42±0.25) when using the same algorithm. They 
inferred that the differences in accuracy were primarily 

Figure 2 Graphical representation of explainable artificial intelligence model performance metrics. Two classes: healthy, 
geographic atrophy; three classes: healthy, geographic atrophy and other retinal diseases.

Figure 3 Examples of a class activation map for prediction 
of healthy eyes (category 1), eyes with geographic atrophy 
(category 2) and eyes with retinal diseases other than 
geographic atrophy (category 3) by the trained model using 
the test data set.
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due to the presentation of GA features in these distinct 
imaging modalities.24 This highlights the advantages of 
using FAF over CFP for GA detection, given its superior 
accuracy and reliability.

However, FAF and OCT methodologies, although 
effective, come with significant costs and require highly 
skilled personnel to manage the equipment and inter-
pret the results. This limitation could impede widespread 
adoption, particularly in resource- limited settings or 
areas lacking specialised healthcare professionals.17 18 In 
contrast, CFP emerges as a more affordable, accessible 
and user- friendly alternative. Historically, CFP has been 
the gold standard for imaging GA and the principal 
tool for measuring GA lesions in clinical trials.11 25 It is 
the primary modality employed in large- scale epidemi-
ological studies and disease classification systems. GA 
lesions in CFP appear as retinal depigmentation, which 
enhances visibility of the underlying choroid. However, 
due to media opacities and low contrast between atrophic 
and non- atrophic areas, CFP’s depiction of GA features 
is limited, making GA lesion and boundary detection 
challenging. Consequently, CFP has been associated with 
subpar performance in identifying GA, and due to image 
quality constraints, it is often not suitable for automated 
or semi- automated detection algorithms.11 This is further 
evidenced by the mixed results reported in the literature, 
emphasising the need for alternative imaging techniques 
or improved AI algorithms for more accurate and reli-
able GA detection using CFP images.14

In contrast with previous studies, our results success-
fully demonstrate that the implementation of the present 
XAI model can significantly enhance GA detection using 
CFP. This underscores the potential of our AI- based 
strategy to overcome traditional CFP- based model limita-
tions, serving as a viable alternative for more accurate and 
reliable GA detection in a variety of healthcare environ-
ments. Using a unique explainable learning model, our 
approach achieved high diagnostic accuracy for identi-
fying GA in a diverse dataset of colour retinal images.26 27

Remarkably, our model demonstrated commendable 
performance by employing a pretrained model anchored 
in ImageNet, and then refining this model using a mere 
300 images for training. This approach allowed us to 
exceed the performance exhibited in Keenan’s research, 
showcasing the effectiveness of our method despite the 
lean data set.28 This superior performance and improved 
transparency, ascribed to the explainable nature of our AI 
system, promotes greater understanding and trust in its 
predictive abilities. Specifically, this model does not merely 
function as a ‘black box’, but rather provides a transparent 
process that explains its diagnostic conclusions. The deep 
learning model, based on the Efficientnet_b2 architec-
ture pretrained on the ImageNet data set, demonstrated 
remarkable diagnostic accuracy in identifying GA from 
retinal photographs. These results surpassed expectations 
and were found to be robust in a multicategory classifica-
tion scenario involving other retinal diseases. Moreover, 
using colour retinal photographs, a more accessible and 

cost- effective imaging modality compared with OCT or 
FAF, supports the model’s applicability across a variety of 
healthcare settings.

In addition to the accuracy achieved, a noteworthy 
feature of our study is the use of GradCAM, a CAM 
module, to produce heatmaps. These heatmaps offer an 
invaluable tool for identifying the specific regions in the 
retinal image that were most influential in the model’s 
predictions. This visualisation can potentially bridge the 
gap between the AI’s decision- making process and the 
human clinician’s understanding, fostering trust and 
facilitating more effective communication. The ‘explain-
ability’ of the AI model presents a unique advantage, 
particularly in ophthalmology where clear interpreta-
tion and explanation of diagnostic decisions can impact 
patient care significantly.

By offering interpretability and transparency in the 
decision- making process, XAI enhances trust in AI 
systems, enabling clinicians to make better- informed 
decisions and validate AI- generated outcomes. XAI also 
addresses regulatory compliance and ethical concerns 
by making AI decision- making processes more under-
standable, auditable, fair and accountable. Additionally, 
XAI facilitates error detection and model refinement, 
ultimately improving the accuracy and performance of 
AI models in complex domains such as medical imaging 
and screening.27

The use of the GradCAM mechanism provides a path 
to uncover the model’s internal logic and potentially 
identify novel features or patterns that contribute to the 
detection of GA. Such insights could enhance our under-
standing of the disease’s pathology, leading to better 
diagnostic and treatment strategies in the future.

Though our study achieved promising results, it is 
essential to address its limitations. A potential limitation 
of our AI model is its reliance on images captured using 
a single fundus camera, which may impact the general-
isability of the results to images acquired from different 
cameras or imaging systems. Furthermore, the study was 
conducted at a single centre and employed a relatively 
homogeneous population which could introduce poten-
tial biases and restrict the model’s applicability to a more 
diverse range of patients with varying demographics and 
clinical characteristics.

However, we view these limitations as potential 
strengths of our approach. The specificity of our AI 
model to a single imaging system and a particular popu-
lation illustrates that focusing on a distinct imaging 
device and a specific patient demographic can deliver 
high performance, even with smaller training data sets. 
Whereas many AI models are trained on expansive image 
databases from multiple fundus cameras and across a 
broad spectrum of pathologies, our study underscores 
the potential advantages of developing bespoke AI solu-
tions specific to individual diagnostic tools and certain 
retinal pathologies. This approach could significantly 
boost the precision and efficacy of AI- assisted detection 
and diagnosis in ophthalmology.
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In reflection on the limitations of our study, the exclu-
sion of individuals with high myopia is acknowledged. 
Moreover, in this study, patients with concurrent GA 
and other retinal conditions were not included. These 
criteria, while aiding in the uniformity of our study 
population, may not mirror the diversity of patients 
encountered in real- world clinical settings. In practice, 
the inclusion of patients with high myopia or those 
with concurrent GA and other retinal conditions could 
introduce additional variability, given the distinct retinal 
changes often associated with these conditions. Such 
inclusion could potentially impact the AI model’s perfor-
mance, necessitating further refinements to accurately 
identify and classify GA amidst the backdrop of other 
retinal alterations. Future studies should consider these 
patient demographics to ensure broader applicability 
and validation of the AI model in a more inclusive and 
diverse patient population.

One statistical limitation of this study is the poten-
tial for overfitting due to the relatively small sample 
size. By training on the entire data set with early stop-
ping after 20 epochs, we were able to maximise the use 
of the limited training data while avoiding overfitting. 
The addition of aggressive dropout with a rate of 90% 
during training also regularised the model to improve 
generalisation. While these techniques help reduce over-
fitting, testing the model on larger and more diverse data 
sets remains important future work to fully confirm its 
applicability across different demographics and imaging 
systems. Compared with previous studies that used deep 
learning models for GA detection, our study stands out 
due to the explainability of our AI model. This transpar-
ency not only fosters trust in the model’s predictions but 
also provides valuable insights into the features that the 
model considers important for GA detection.

In conclusion, our study presents an effective, XAI 
model capable of accurately diagnosing GA from colour 
retinal photographs, thus demonstrating the potential of 
AI in the field of ophthalmology. By employing a trans-
parent decision- making process, our model enhances 
trust and improves understanding, contributing to the 
potential widespread adoption of AI technology in clinical 
settings. As such, the results from our study suggest that 
AI may become a powerful tool in screening campaigns 
to diagnose GA promptly and accurately, enabling timely 
intervention and improved patient outcomes.
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