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‘It was the best of times; it was the worst of 
times’. Such words never get old in any era. 
Similarly, in ophthalmology, the same thing 
is happening. Artificial intelligence (AI) 
using machine learning and deep learning 
in ophthalmology have created incredible 
chemistry,1 2 with the US Food and Drug 
Administration (FDA) approving AI- based 
diagnostic technology for autonomous 
diabetic retinopathy screening.3 A human- 
centred AI study, on diabetic retinopathy 
screening, conducted in Thailand with the 
Google team, highlighted many unexpected 
real- world problems and questions. Further 
work is required to determine formal cost- 
benefit analyses, specific workflows for live 
implementation in diverse healthcare settings 
and solutions for real- world challenges such 
as lack of internet connectivity or electronic 
health records.4

Transforming healthcare with AI is a beau-
tiful aspiration, which everyone expects 
something1 2 from. Most patients with stable 
but chronic eye disease would want to spend 
less time in crowded waiting rooms waiting 
for brief and hurried consultations; clinicians 
wish to focus their limited energy on solving 
problems; engineers want their code to 
change the world and device manufacturers 
want their devices to be the gateway to a virtu-
ally connected reality. So, is reality as good as 
it seems?

The most compelling application of AI in 
ophthalmology is to aid in diagnosis. Stan-
dardised image acquisition in ophthalmology 
brings a unique advantage to deep learning. 
From corneal topography to optical coherence 
tomography angiography, many ophthalmic 
assistive exams have objective image quality 
checks on the images at the time of acqui-
sition, which can be used to determine the 
credibility of the examination results and as 
high- quality input data for model training. 
Theoretically, AI- assisted diagnosis applies 
to most common cases in ophthalmology. 
Researchers and engineers in ophthalmology 
have made outstanding contributions to this 

effort. If someone follow developments in 
this field, he/she will know that AI has shown 
fantastic potential in subspecialties such as 
diabetic retinopathy, glaucoma, retinal vein 
occlusion and so on.5–8 Many AI- related 
ophthalmological programmes are going 
worldwide and many automated eye- disease 
screening and analysis medical devices have 
been successfully applied in the clinical prac-
tice.9 AI can be found in almost all areas of 
ophthalmology, from the anterior segment 
of the eye to the fundus.10–12 Clinicians have 
provided many noteworthy labels for machine 
learning based on their own experience, and 
we look forward to adding the next label 
that will make the model even better. As of 
2020, there are 94 publicly accessible down-
loadable ophthalmology databases, and more 
than half of the image data are retinal fundus 
photographs, with 18% of these databases not 
labelled with the relevant diseases collected. 
Unfortunately, most databases lack basic 
information (age, sex, ethnicity, etc) and 
inclusion and exclusion criteria are missing. 
Barriers to using these data include low visi-
bility, accessibility issues or limited usability 
due to incomplete metadata, including the 
lack of critical parameters needed to assess 
data sources, data quality and diversity of the 
populations sampled.13

Human learning behaviour has not yet 
been fully explained at the neurological level, 
and the emerging interdisciplinary field of 
cognitive neuroscience was born to study 
this behaviour.14 Most AI models are disease- 
centric, and it is challenging to train an AI 
model to detect normal fundus photos. For 
training, most AI models require the index 
case (positive cases) versus control (non- 
positive cases that usually include normal and 
other non- index pathologies). On the other 
hand, the human brain is easier in registering 
the ‘normal images’ without any pathology. 
This is unique to the human brain compared 
with the convolutional neural network we 
are currently using. Of course different algo-
rithms optimise this feature, for example, 
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when we use semi- supervised learning, this method 
requires only a small number of data to be labelled. To 
unravel the intricate structure behind the data model, 
the machine must be able to infer patterns between 
observations for which it has not received explicit tagged 
information. Semi- supervised learning aims to provide 
mechanisms for making such connections, which will be 
essential for achieving this goal.15 Unfortunately, many 
semi- supervised learning methods only perform better 
than their supervised counterparts or base learners in 
specific cases.16 17 But this has received relatively little 
academic attention.18 Furthermore, different algorithms 
fuse to enhance, and many algorithms have been itera-
tively upgraded to follow the progress of the times and 
the increase in computing power. First to be noticed are 
the recent advances in semi- supervised neural networks. 
Minor variations in the input space should only cause 
minor variations in the output space. This assumption 
makes incorporating unsupervised loss terms into the 
cost function more straightforward than before. This 
flexibility also accommodates the incorporation of more 
complex cost terms. Another potential remedy for the 
lack of robustness of semi- supervised learning methods 
lies in the application of automated machine learning to 
the semi- supervised setting. These approaches include 
meta- learning and neural architecture search as well as 
automatic algorithm selection and hyperparameter opti-
misation, which have been prominently and successfully 
applied to supervised learning, but there has been no 
application to semi- supervised learning so far.15 However, 
there are some issues with the usability. Semi- supervised 
learning is much less standardised compared with super-
vised learning. The KEEL software package includes a 
semi- supervised learning module,19 and implementa-
tions of some transductive graph- based methods exist in 
scikit- learn.

While the algorithm evolves, it also must match 
the right application scenario. In the experiments in 
Bangkok, the environmental light in the clinic obstructed 
the proper functioning of the diabetic retinopathy diag-
nostic model.20 Nurses needed to constantly readjust to 
get an image quality that the machine would recognise, 
reducing their productivity in an already busy workday. 
As humans train the models, the models train humans. 
Could we also consider adding some non- clinical diag-
nostic factors into the model training? For example, use 
an AI- enabled automated image optimisation software to 
improve the luminance, contrast and eye- camera coordi-
nation during the image acquisition stage? Such feature 
points will help increase the model’s fit, although they 
require higher- resolution sensors.

Even if the AI diagnostic performance is deemed 
to be clinically acceptable in the research and devel-
opment phase like the above- mentioned example, 
the real- world AI implementation can possess many 
challenges, including AI bias due to differences in 
capturing devices, locations in the specific organs, 
population/ethnicities; generalisability; data privacy; 

ethics and social equities. As we need evidence- based 
medicine, algorithm training requires constantly 
expanding the data sample and maintaining a certain 
update frequency. The FDA uses a framework called 
Software as Medical Device to review and approve 
the marketing of AI- based technologies, which eval-
uates algorithms throughout their life cycle.21 Big 
data and AI may also expose the health risks of some 
specific populations, leading to an inevitable imbal-
ance in the distribution of health insurance resources 
and social injustice. Although AI systems can often 
achieve ‘state- of- the- art’ performance on ‘in silico’ 
testing, these findings are often not replicated in the 
real world. In this regard, a major focus of clinical 
AI research is the development of systems which are 
(1) robust (eg, will work on different machines and 
in different conditions), (2) reliable (eg, can give 
some measure of certainty with which they provide an 
output), (3) safe (eg, can detect rare but potentially 
serious ophthalmic conditions) and (4) fair (eg, can 
work equally well in different populations, particu-
larly with regard to age, gender and ethnicity).

Technological optimism and pessimism need to 
strike a delicate balance about healthcare, a complex 
relationship between society, ethics and technology 
that only humans can weigh. Until now, if you ask any 
clinician whether AI is widely adopted in the clinical 
practice, his/her answer mostly likely is a ‘no’. Medi-
cine is an art, and there are limits to the benefits that 
a single technological advancement can bring. AI in 
the clinical optimisation of the patient and doctor 
experience is its true mission. AI combined with clin-
ical practice can only better step into the business 
world to achieve a positive cycle of input and output. 
As clinicians, we all know that ‘To cure sometimes. 
Often relieves. Always comfort’. Taking technology 
and adding humanistic care may be a condition for 
AI to move towards medical reality; even if AI is suffi-
cient to solve clinical problems, it cannot understand 
what is happening in the clinic.
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